Oral intake of xanthohumol attenuates lipoteichoic acid-induced inflammatory response in human PBMCs

Finn Jung, Raphaela Staltner, Ammar Tahir, Anja Baumann, Katharina Burger, Emina Halilbasic, Claus Hellerbrand, Ina Bergheim, Finn Jung, Raphaela Staltner, Ammar Tahir, Anja Baumann, Katharina Burger, Emina Halilbasic, Claus Hellerbrand, Ina Bergheim

Abstract

Purpose: The aim of the study was to determine if xanthohumol, a prenylated chalcone found in Hop (Humulus lupulus), has anti-inflammatory effects in healthy humans if applied in low doses achievable through dietary intake.

Methods: In a placebo-controlled single-blinded cross-over design study, 14 healthy young men and women either consumed a beverage containing 0.125 mg xanthohumol or a placebo. Peripheral blood mononuclear cells (PBMCs) were isolated before and 1 h after the intake of the beverages. Subsequently, PBMCs were stimulated with or without lipoteichoic acid (LTA) for 24 and 48 h. Concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6) and soluble cluster of differentiation (sCD14) protein were determined in cell culture supernatant. Furthermore, hTLR2 transfected HEK293 cells were stimulated with LTA in the presence or absence of xanthohumol and sCD14.

Results: The stimulation of PBMCs with LTA for 24 and 48 h resulted in a significant induction of IL-1β, IL-6, and sCD14 protein release in PBMCs of both, fasted subjects and subjects after the ingestion of the placebo. In contrast, after ingesting xanthohumol, LTA-dependent induction of IL-1β, IL-6, and sCD14 protein release from PBMCs was not significantly higher than in unstimulated cells after 48 h. In hTLR2 transfected HEK293 cells xanthohumol significantly suppressed the LTA-dependent activation of cells, an effect attenuated when cells were co-incubated with sCD14.

Conclusion: The results of our study suggest that an ingestion of low doses of xanthohumol can suppress the LTA-dependent stimulation of PBMCs through mechanisms involving the interaction of CD14 with TLR2. Study registered at ClinicalTrials.gov (NCT04847193, 22.03.2022).

Keywords: Hop; Inflammation; LTA; TLR2; Xanthohumol.

Conflict of interest statement

The authors have no relevant financial or non-financial interests to disclose.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study design and cytokine concentrations in supernatant of stimulated PBMCs. Graphical illustration of the general study design a and on the study days b as well as protein concentrations of IL-1β c and IL-6 d in cell culture supernatant of cells stimulated with 0 or 10 µg/ml LTA isolated from healthy study participants receiving either a placebo or xanthohumol. IL interleukin, LTA lipoteichoic acid, PBMC peripheral blood mononuclear cell, XN xanthohumol. Data are expressed as means ± SEM. *p < 0.05. Figure was created with Microsoft PowerPoint (a, b) and GraphPad Prism 7 (c, d)
Fig. 2
Fig. 2
Fluorescence imaging of PBMCs isolated from study participants as well as hTLR2 receptor activities of HEK293 cells stimulated with 0–8 μg/ml xanthohumol for 12 h. Fluorescence imaging of PBMCs (a) as well as lymphocytes and monocytes (b) obtained from study participants before and after oral ingestion of xanthohumol (magnification: 630×) and hTLR2 receptor activities from HEK293 cells co-incubated with lipoteichoic acid (10 μg/ml) and increasing concentrations of xanthohumol (0–8 μg/ml) (c). hTLR2 human toll-like receptor 2, LTA lipoteichoic acid, PBMC peripheral blood mononuclear cell, XN xanthohumol. Data are expressed as means ± SEM. *p < 0.05. Figure was created with Leica LAS X (a, b) and GraphPad Prism 7 (c)
Fig. 3
Fig. 3
Protein concentration of TLR2 in cell lysate and sCD14 in cell culture supernatant of LTA-stimulated PBMCs as well as effect of sCD14 on LTA-stimulated HEK293 cells co-incubated with xanthohumol. Representative blots (a) and densitometric analysis of TLR2 western blot (b) in cell lysate as well as representative blots (c) and densitometric analysis of sCD14 western blot (d) in cell culture supernatant of LTA-stimulated (10 μg/ml) PBMCs obtained from study participants either receiving a placebo or xanthohumol. hTLR2 receptor activities of HEK293 cells incubated with xanthohumol (3 μg/ml) and sCD14 (200 ng/ml) (e). LTA lipoteichoic acid, hTLR2 human toll-like receptor 2, sCD14 soluble cluster of differentiation 14, PBMC peripheral blood mononuclear cell, XN xanthohumol. Data are expressed as means ± SEM. *p < 0.05. Figure was created with Bio-Rad Image Lab 4.0 (a, c) and GraphPad Prism 7 (b, d, e)
Fig. 4
Fig. 4
Schematic summary of the study results. CD14 cluster of differentiation 14, LTA lipoteichoic acid, TLR2 toll-like receptor 2. Figure was created with Microsoft PowerPoint

References

    1. Woodford N, Livermore DM. Infections caused by Gram-positive bacteria: a review of the global challenge. J Infect. 2009;59(Suppl 1):S4–16. doi: 10.1016/S0163-4453(09)60003-7.
    1. Weidenmaier C, Peschel A. Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol. 2008;6(4):276–287. doi: 10.1038/nrmicro1861.
    1. Grundling A, Schneewind O. Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci U S A. 2007;104(20):8478–8483. doi: 10.1073/pnas.0701821104.
    1. Mukherjee S, Karmakar S, Babu SP. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. Braz J Infect Dis. 2016;20(2):193–204. doi: 10.1016/j.bjid.2015.10.011.
    1. Overland G, Morath S, Yndestad A, Hartung T, Thiemermann C, Foster SJ, Smedsrod B, Mathisen O, Aukrust P, Aasen AO, Wang JE. Lipoteichoic acid is a potent inducer of cytokine production in rat and human Kupffer cells in vitro. Surg Infect (Larchmt) 2003;4(2):181–191. doi: 10.1089/109629603766956979.
    1. Ellingsen E, Morath S, Flo T, Schromm A, Hartung T, Thiemermann C, Espevik T, Golenbock D, Foster D, Solberg R, Aasen A, Wang J. Induction of cytokine production in human T cells and monocytes by highly purified lipoteichoic acid: involvement of Toll-like receptors and CD14. Med Sci Monit. 2002;8(5):BR149–156.
    1. Kwak MS, Lim M, Lee YJ, Lee HS, Kim YH, Youn JH, Choi JE, Shin JS. HMGB1 binds to lipoteichoic acid and enhances TNF-alpha and IL-6 production through HMGB1-Mediated transfer of lipoteichoic acid to CD14 and TLR2. J Innate Immun. 2015;7(4):405–416. doi: 10.1159/000369972.
    1. Schroder NW, Morath S, Alexander C, Hamann L, Hartung T, Zahringer U, Gobel UB, Weber JR, Schumann RR. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem. 2003;278(18):15587–15594. doi: 10.1074/jbc.M212829200.
    1. Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol. 2008;116(3):383–396. doi: 10.1016/j.jep.2008.01.011.
    1. Iniguez AB. Zhu MJ (2020) Hop bioactive compounds in prevention of nutrition-related noncommunicable diseases. Crit Rev Food Sci Nutr. 2020 doi: 10.1080/10408398.2020.1767537.
    1. Pang Y, Nikolic D, Zhu D, Chadwick LR, Pauli GF, Farnsworth NR, van Breemen RB. Binding of the hop (Humulus lupulus L.) chalcone xanthohumol to cytosolic proteins in Caco-2 intestinal epithelial cells. Mol Nutr Food Res. 2007;51(7):872–879. doi: 10.1002/mnfr.200600252.
    1. Legette L, Karnpracha C, Reed RL, Choi J, Bobe G, Christensen JM, Rodriguez-Proteau R, Purnell JQ, Stevens JF. Human pharmacokinetics of xanthohumol, an antihyperglycemic flavonoid from hops. Mol Nutr Food Res. 2014;58(2):248–255. doi: 10.1002/mnfr.201300333.
    1. Tuli HS, Aggarwal V, Parashar G, Aggarwal D, Parashar NC, Tuorkey MJ, Varol M, Sak K, Kumar M, Buttar HS. Xanthohumol: a metabolite with promising anti-neoplastic potential. Anticancer Agents Med Chem. 2021 doi: 10.2174/1871520621666210223095021.
    1. Weiskirchen R, Mahli A, Weiskirchen S, Hellerbrand C. The hop constituent xanthohumol exhibits hepatoprotective effects and inhibits the activation of hepatic stellate cells at different levels. Front Physiol. 2015;6:140–140. doi: 10.3389/fphys.2015.00140.
    1. Munoz-Garcia N, Escate R, Badimon L, Padro T. Moderate beer intake downregulates inflammasome pathway gene expression in human macrophages. Biology (Basel) 2021 doi: 10.3390/biology10111159.
    1. Molteni M, Bosi A, Rossetti C. Natural products with toll-like receptor 4 antagonist activity. Int J Inflamm. 2018;2018:2859135. doi: 10.1155/2018/2859135.
    1. Chen G, Xiao B, Chen L, Bai B, Zhang Y, Xu Z, Fu L, Liu Z, Li X, Zhao Y, Liang G. Discovery of new MD2-targeted anti-inflammatory compounds for the treatment of sepsis and acute lung injury. Eur J Med Chem. 2017;139:726–740. doi: 10.1016/j.ejmech.2017.08.036.
    1. Cho Y-C, Kim HJ, Kim Y-J, Lee KY, Choi HJ, Lee I-S, Kang BY. Differential anti-inflammatory pathway by xanthohumol in IFN-γ and LPS-activated macrophages. Int Immunopharmacol. 2008;8(4):567–573. doi: 10.1016/j.intimp.2007.12.017.
    1. Mahli A, Seitz T, Freese K, Frank J, Weiskirchen R, Abdel-Tawab M, Behnam D, Hellerbrand C. Therapeutic application of micellar solubilized xanthohumol in a western-type diet-induced mouse model of obesity diabetes and non-alcoholic fatty liver disease. Cells. 2019 doi: 10.3390/cells8040359.
    1. Dorn C, Kraus B, Motyl M, Weiss TS, Gehrig M, Scholmerich J, Heilmann J, Hellerbrand C. Xanthohumol, a chalcon derived from hops, inhibits hepatic inflammation and fibrosis. Mol Nutr Food Res. 2010;54(Suppl 2):S205–213. doi: 10.1002/mnfr.200900314.
    1. Pichler C, Ferk F, Al-Serori H, Huber W, Jager W, Waldherr M, Misik M, Kundi M, Nersesyan A, Herbacek I, Knasmueller S. Xanthohumol prevents DNA damage by dietary carcinogens: results of a human intervention trial. Cancer Prev Res (Phila) 2017;10(2):153–160. doi: 10.1158/1940-6207.CAPR-15-0378.
    1. Langley BO, Ryan JJ, Hanes D, Phipps J, Stack E, Metz TO, Stevens JF, Bradley R. Xanthohumol microbiome and signature in healthy adults (the XMaS Trial): safety and tolerability results of a phase I triple-masked, placebo-controlled clinical trial. Mol Nutr Food Res. 2021;65(8):e2001170. doi: 10.1002/mnfr.202001170.
    1. Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health! Phytochemistry. 2004;65(10):1317–1330. doi: 10.1016/j.phytochem.2004.04.025.
    1. Bouchard-Boivin F, Desy O, Beland S, Houde I, De Serres SA. TNF-alpha production by monocytes stimulated with Epstein-Barr virus-peptides as a marker of immunosuppression-related adverse events in kidney transplant recipients. Kidney Int Rep. 2019;4(10):1446–1453. doi: 10.1016/j.ekir.2019.07.007.
    1. Capo X, Martorell M, Sureda A, Batle JM, Tur JA, Pons A. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells. J Physiol Biochem. 2016;72(3):421–434. doi: 10.1007/s13105-016-0490-8.
    1. Ferk F, Misik M, Nersesyan A, Pichler C, Jager W, Szekeres T, Marculescu R, Poulsen HE, Henriksen T, Bono R, Romanazzi V, Al-Serori H, Biendl M, Wagner KH, Kundi M, Knasmuller S. Impact of xanthohumol (a prenylated flavonoid from hops) on DNA stability and other health-related biochemical parameters: results of human intervention trials. Mol Nutr Food Res. 2016;60(4):773–786. doi: 10.1002/mnfr.201500355.
    1. Menck K, Behme D, Pantke M, Reiling N, Binder C, Pukrop T, Klemm F. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags. J Vis Exp. 2014;91:e51554. doi: 10.3791/51554.
    1. Wolff H, Motyl M, Hellerbrand C, Heilmann J, Kraus B. Xanthohumol uptake and intracellular kinetics in hepatocytes, hepatic stellate cells, and intestinal cells. J Agric Food Chem. 2011;59(24):12893–12901. doi: 10.1021/jf203689z.
    1. Motyl M, Kraus B, Heilmann J. Pitfalls in cell culture work with xanthohumol. Pharmazie. 2012;67(1):91–94.
    1. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P T. 2015;40(4):277–283.
    1. Stevens JF, Taylor AW, Clawson JE, Deinzer ML. Fate of xanthohumol and related prenylflavonoids from hops to beer. J Agric Food Chem. 1999;47(6):2421–2428. doi: 10.1021/jf990101k.
    1. Chen X, Li Z, Hong H, Wang N, Chen J, Lu S, Zhang H, Zhang X, Bei C. Xanthohumol suppresses inflammation in chondrocytes and ameliorates osteoarthritis in mice. Biomed Pharmacother. 2021;137:111238. doi: 10.1016/j.biopha.2021.111238.
    1. Zhang M, Zhang R, Zheng T, Chen Z, Ji G, Peng F, Wang W. Xanthohumol attenuated inflammation and ECM degradation by mediating HO-1/C/EBPbeta pathway in osteoarthritis chondrocytes. Front Pharmacol. 2021;12:680585. doi: 10.3389/fphar.2021.680585.
    1. Arczewska M, Kaminski DM, Gorecka E, Pociecha D, Roj E, Slawinska-Brych A, Gagos M. The molecular organization of prenylated flavonoid xanthohumol in DPPC multibilayers: X-ray diffraction and FTIR spectroscopic studies. Biochim Biophys Acta. 2013;1828(2):213–222. doi: 10.1016/j.bbamem.2012.10.009.
    1. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189(11):1777–1782. doi: 10.1084/jem.189.11.1777.
    1. da Silva CJ, Soldau K, Christen U, Tobias PS, Ulevitch RJ. Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex transfer from CD14 to TLR4 and MD-2. J Biol Chem. 2001;276(24):21129–21135. doi: 10.1074/jbc.M009164200.
    1. da Silva CJ, Ulevitch RJ. MD-2 and TLR4 N-linked glycosylations are important for a functional lipopolysaccharide receptor. J Biol Chem. 2002;277(3):1845–1854. doi: 10.1074/jbc.M109910200.
    1. Dziarski R, Wang Q, Miyake K, Kirschning CJ, Gupta D. MD-2 enables Toll-like receptor 2 (TLR2)-mediated responses to lipopolysaccharide and enhances TLR2-mediated responses to Gram-positive and Gram-negative bacteria and their cell wall components. J Immunol. 2001;166(3):1938–1944. doi: 10.4049/jimmunol.166.3.1938.
    1. Dziarski R, Gupta D. Role of MD-2 in TLR2- and TLR4-mediated recognition of Gram-negative and Gram-positive bacteria and activation of chemokine genes. J Endotoxin Res. 2000;6(5):401–405. doi: 10.1179/096805100101532243.
    1. Chun KH, Seong SY. CD14 but not MD2 transmit signals from DAMP. Int Immunopharmacol. 2010;10(1):98–106. doi: 10.1016/j.intimp.2009.10.002.
    1. Zivkovic A, Sharif O, Stich K, Doninger B, Biaggio M, Colinge J, Bilban M, Mesteri I, Hazemi P, Lemmens-Gruber R, Knapp S. TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo. J Immunol. 2011;186(3):1608–1617. doi: 10.4049/jimmunol.1001665.
    1. Bazil V, Strominger JL. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991;147(5):1567–1574.
    1. Rokita E, Menzel EJ. Characteristics of CD14 shedding from human monocytes. Evidence for the competition of soluble CD14 (sCD14) with CD14 receptors for lipopolysaccharide (LPS) binding. APMIS. 1997;105(7):510–518. doi: 10.1111/j.1699-0463.1997.tb05048.x.

Source: PubMed

3
S'abonner