Neurometabolic Evidence Supporting the Hypothesis of Increased Incidence of Type 3 Diabetes Mellitus in the 21st Century

Anna Rorbach-Dolata, Agnieszka Piwowar, Anna Rorbach-Dolata, Agnieszka Piwowar

Abstract

The most recent evidence supports the existence of a link between type 2 diabetes (T2DM) and Alzheimer's Disease (AD), described by the new term: type 3 diabetes (T3D). The increasing incidence of T2DM in the 21st century and accompanying reports on the higher risk of AD in diabetic patients prompts the search for pathways linking glycemia disturbances and neurodegeneration. It is suggested that hyperglycemia may lead to glutamate-induced excitotoxicity, a pathological process resulting from excessive depolarization of membrane and uncontrolled calcium ion influx into neuronal cells. On the other hand, it has been confirmed that peripheral insulin resistance triggers insulin resistance in the brain, which may consequently contribute to AD by amyloid beta accumulation, tau phosphorylation, oxidative stress, advanced glycation end products, and apoptosis. Some literature sources suggest significant amylin involvement in additional amyloid formation in the central nervous system, especially under hyperamylinemic conditions. It is particularly important to provide early diagnostics in people with metabolic disturbances, especially including fasting insulin and HOMA-IR, which are necessary to reveal insulin resistance. The present review reveals the most recent and important evidence associated with the phenomenon of T3D and discusses the potential lacks of prevention and diagnostics for diabetes which might result in neurometabolic disorders, from a pharmacotherapy perspective.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Proposed pathway of hyperglycemia-induced excitotoxicity leading to T3D.

References

    1. Song M. K., Bischoff D. S., Song A. M., Uyemura K., Yamaguchi D. T. Metabolic relationship between diabetes and Alzheimer's Disease affected by Cyclo(His-Pro) plus zinc treatment. BBA Clinical. 2016;7:41–54. doi: 10.1016/j.bbacli.2016.09.003.
    1. McMillan J. M., Mele B. S., Hogan D. B., Leung A. A. Impact of pharmacological treatment of diabetes mellitus on dementia risk: systematic review and meta-analysis. BMJ Open Diabetes Research & Care. 2018;6(1):p. e000563. doi: 10.1136/bmjdrc-2018-000563.
    1. Gudala K., Bansal D., Schifano F., Bhansali A. Diabetes mellitus and risk of dementia: a meta-analysis of prospective observational studies. Journal of Diabetes Investigation. 2013;4(6):640–650. doi: 10.1111/jdi.12087.
    1. Li X., Song D., Leng S. X. Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clinical Interventions in Aging. 2015;10:549–560. doi: 10.2147/cia.s74042.
    1. Centers of disease control and prevention. 2019, .
    1. American diabetes association. 2019,
    1. United nations regional information centre for western europe (UNRIC Brussels) 2019,
    1. Esteghamati A., Larijani B., Aghajani M. H., et al. Diabetes in Iran: prospective analysis from first nationwide diabetes report of national program for prevention and control of diabetes (NPPCD-2016) Scientific Reports. 2017;7(1, article no. 13461) doi: 10.1038/s41598-017-13379-z.
    1. Alzheimer association. 2019, .
    1. Hebert L. E., Weuve J., Scherr P. A., Evans D. A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology. 2013;80(19):1778–1783. doi: 10.1212/WNL.0b013e31828726f5.
    1. Steen E., Terry B. M., J. Rivera E., et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–Is this type 3 diabetes? Journal of Alzheimer's Disease. 2005;7(1):63–80. doi: 10.3233/JAD-2005-7107.
    1. Huang C., Lai M., Cheng J., et al. Pregabalin attenuates excitotoxicity in diabetes. PLoS ONE. 2013;13, artilce no. e65154 doi: 10.1371/journal.pone.0065154.
    1. de la Monte S. M., Wands J. R. Alzheimer's disease is type 3 diabetes-evidence reviewed. Journal of Diabetes Science and Technology. 2008;2(6):1101–1113. doi: 10.1177/193229680800200619.
    1. Lau A., Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv - European Journal of Physiology. 2010;460(2):525–542. doi: 10.1007/s00424-010-0809-1.
    1. Sundaram R., Gowtham L., Nayak BS. The role of excitatory neurotransmiter glutamate in brain physiology and pathology. Asian Journal of Pharmaceutical and Clinical Research. 2012;5:1–7.
    1. Villoslada P. Neuroprotective therapies for multiple sclerosis and other demyelinating diseases. Multiple Sclerosis and Demyelinating Disorders. 2016;1(1) doi: 10.1186/s40893-016-0004-0.
    1. Dong X.-X., Wang Y., Qin Z.-H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica. 2009;30(4):379–387. doi: 10.1038/aps.2009.24.
    1. Danysz W., Parsons C. G. Alzheimer's disease, β-amyloid, glutamate, NMDA receptors and memantine—searching for the connections. British Journal of Pharmacology. 2012;167(2):324–352. doi: 10.1111/j.1476-5381.2012.02057.x.
    1. Yu X. M. The role of intracellular sodium in the regulation of nmda-receptor-mediated channel activity and toxicity. Molecular Neurobiology. 2010;33:63–80. doi: 10.1385/MN:33:1:063.
    1. Wang Y., Han R., Liang Z.-Q., et al. An autophagic mechanism is involved in apoptotic death of rat striatal neurons induced by the non-N-methyl-D-aspartate receptor agonist kainic acid. Autophagy. 2008;4(2):214–226. doi: 10.4161/auto.5369.
    1. Wang Y., Gu Z., Cao Y., et al. Lysosomal enzyme cathepsin B is involved in kainic acid-induced excitotoxicity in rat striatum. Brain Research. 2006;1071(1):245–249. doi: 10.1016/j.brainres.2005.10.074.
    1. Pivovarova N. B., Andrews S. B. Calcium-dependent mitochondrial function and dysfunction in neurons: minireview. FEBS Journal. 2012;277(18):3622–3636. doi: 10.1111/j.1742-4658.2010.07754.x.
    1. Hynd M. R., Scott H. L., Dodd P. R. Glutamate-mediated excitotoxicity and neurodegenerationin Alzheimer’s disease. Neurochemistry International. 2004;45:583–595.
    1. Hu L., Zhuang S. Alzheimer’s disease and glucose metabolism. Aging and Neurodegeneration. 2014;2:6–10.
    1. Mittal K., Mani R. J., Katare D. P. Type 3 diabetes: cross talk between differentially regulated proteins of type 2 diabetes mellitus and alzheimer's disease. Scientific Reports. 2016;6 doi: 10.1038/srep25589.25589
    1. Kim B., Backus C., Oh S., Hayes J. M., Feldman E. L. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology. 2009;150(12):5294–5301. doi: 10.1210/en.2009-0695.
    1. Liu Y., Liu F., Iqbal K., Grundke-Iqbal I., Gong C. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Letters. 2008;582(2):359–364. doi: 10.1016/j.febslet.2007.12.035.
    1. Kroner Z. The relationship between Alzheimer’s disease and diabetes: type 3 diabetes. Alternative Medicine Review. 2009;14:373–379.
    1. Krzymien J., Karnafel W. Lactic acidosis in patients with diabetes. Pol Arch Med Wewn. 2013;123(3):91–97.
    1. Li P., Shamloo M., Katsura K., Smith M., Siesjö B. K. Critical values for plasma glucose in aggravating ischaemic brain damage: correlation to extracellular pH. Neurobiology of Disease. 1995;2(2):97–108. doi: 10.1006/nbdi.1995.0010.
    1. Butterfield D. A., Di Domenico F., Barone E. Elevated risk of type 2 diabetes for development of Alzheimer disease: a key role for oxidative stress in brain. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2014;1842(9):1693–1706. doi: 10.1016/j.bbadis.2014.06.010.
    1. Macauley S. L., Stanley M., Caesar E. E. Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo. The Journal of Clinical Investigation. 2015;125(6):2463–2467. doi: 10.1172/jci79742.
    1. Huang C., You J., Lee C., Hsu K. Insulin induces a novel form of postsynaptic mossy fiber long-term depression in the hippocampus. Molecular and Cellular Neuroscience. 2003;24(3):831–841. doi: 10.1016/S1044-7431(03)00238-0.
    1. Lau J. C. M., Kroes R. A., Moskal J. R., Linsenmeier R. A. Diabetes changes expression of genes related to glutamate neurotransmission and transport in the Long-Evans rat retina. Molecular Vision. 2013;19:1538–1553.
    1. Duarte A., Candeias E., Correia S., et al. Crosstalk between diabetes and brain: Glucagon-like peptide-1 mimetics as a promising therapy against neurodegeneration. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2013;1832(4):527–541. doi: 10.1016/j.bbadis.2013.01.008.
    1. Ko S. Y., Ko H. A., Chu K. H. The possible mechanism of advanced glycation end products (AGEs) for alzheimer's disease. PLoS ONE. 2015;10(11) doi: 10.1371/journal.pone.0143345.e0143345
    1. Nampoothiri M., Reddy N. D., John J., Kumar N., Nampurath G. K., Chamallamudi M. R. Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells. Behavioural Neurology. 2014;2014:8. doi: 10.1155/2014/674164.674164
    1. Benedict C., Hallschmid M., Schultes B., Born J., Kern W. Intranasal insulin to improve memory function in humans. Neuroendocrinology. 2007;86(2):136–142. doi: 10.1159/000106378.
    1. Reger M. A., Watson G. S., Green P. S., et al. Intranasal insulin improves cognition and modulates -amyloid in early AD. Neurology. 2008;70(6):440–448. doi: 10.1212/01.WNL.0000265401.62434.36.
    1. Margolis R. U., Altszuler N. Insulin in the cerebrospinal fluid. Nature. 1967;215(5108):1375–1376. doi: 10.1038/2151375a0.
    1. Woods S. C., Porte Jr D. Relationship between plasma and cerebrospinal fluid insulin levels of dogs. American Journal of Physiology. 1977;233:E331–E334.
    1. Blázquez E., Velázquez E., Hurtado-Carneiro V., Ruiz-Albusac J. M. Insulin in the brain: Its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and alzheimer's disease. Frontiers in Endocrinology. 2014;5(161)
    1. de la Monte S. M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer's disease. Current Alzheimer Research. 2012;9(1):35–66. doi: 10.2174/156720512799015037.
    1. De Felice F. G., Lourenco M. V., Ferreira S. T. How does brain insulin resistance develop in Alzheimer's disease? Alzheimer's & Dementia. 2014;10(1, supplement):S26–S32. doi: 10.1016/j.jalz.2013.12.004.
    1. Bedse G., Di Domenico F., Serviddio G., Cassano T. Aberrant insulin signaling in Alzheimer's disease: Current knowledge. Frontiers in Neuroscience. 2015;9, artilce no. 204
    1. Cheng Z., Tseng Y., White M. F. Insulin signaling meets mitochondria in metabolism. Trends in Endocrinology & Metabolism. 2010;21(10):589–598. doi: 10.1016/j.tem.2010.06.005.
    1. Lee S., Tong M., Hang S., Deochand C., de la Monte S. CSF and brain indices of insulin resistance, oxidative stress and neuro-inflammation in early versus late Alzheimer’s Disease. Journal of Alzheimers Disease & Parkinsonism. 2013;3, article no. 128
    1. Talbot K., Wang H.-Y., Kazi H., et al. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. The Journal of Clinical Investigation. 2012;122(4):1316–1338. doi: 10.1172/jci59903.
    1. Camacho A., Montiel T., Massieu L. Sustained metabolic inhibition induces an increase in the content and phosphorylation of the NR2B subunit of N-methyl-d-aspartate receptors and a decrease in glutamate transport in the rat hippocampus in vivo. Neuroscience. 2007;145(3):873–886. doi: 10.1016/j.neuroscience.2006.12.069.
    1. Ke Y. D., Delerue F., Gladbach A., Götz J., Ittner L. M. Experimental diabetes mellitus exacerbates Tau pathology in a transgenic mouse model of Alzheimer's disease. PLoS ONE. 2009;4(11) doi: 10.1371/journal.pone.0007917.e7917
    1. Zhang X. X., Pan Y. H., Huang Y. M., Zhao H. L. Neuroendocrine hormone amylin in diabetes. World Journal of Diabetes. 2016;7:189–197.
    1. Le Foll C., Johnson M. D., Dunn-Meynell A. A., Boyle C. N., Lutz T. A., Levin B. E. Amylin-induced central il-6 production enhances ventromedial hypothalamic leptin signaling. Diabetes. 2015;64(5):1621–1631. doi: 10.2337/db14-0645.
    1. Jansson J.-O., Palsdottir V. Brain IL-6 - Where amylin and GLP-1 antiobesity signaling congregate. Diabetes. 2015;64(5):1498–1499. doi: 10.2337/db14-1910.
    1. Kiriyama Y., Nochi H. Role and cytotoxicity of amylin and protection of pancreatic islet β-cells from amylin cytotoxicity. Cells. 2018;7(8, article no. E95) doi: 10.3390/cells7080095.
    1. Marzban L., Rhodes C. J., Steiner D. F., Haataja L., Halban P. A., Verchere C. B. Impaired NH2-terminal processing of human proislet amyloid polypeptide by the prohormone convertase PC2 leads to amyloid formation and cell death. Diabetes. 2006;55(8):2192–2201. doi: 10.2337/db05-1566.
    1. Maloy A. L., Longnecker D. S., Robert Greenberg E. The relation of islet amyloid to the clinical type of diabetes. Human Pathology. 1981;12(10):917–922. doi: 10.1016/S0046-8177(81)80197-9.
    1. Jackson K., Barisone G. A., Diaz E., Jin L.-W., DeCarli C., Despa F. Amylin deposition in the brain: a second amyloid in Alzheimer disease? Annals of Neurology. 2013;74(4):517–526. doi: 10.1002/ana.23956.
    1. Banks W. A., Kastin A. J. Differential permeability of the blood–brain barrier to two pancreatic peptides: insulin and amylin. Peptides. 1998;19(5):883–889. doi: 10.1016/S0196-9781(98)00018-7.
    1. Westermark P., Andersson A., Westermark G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiological Reviews. 2011;91(3):795–826. doi: 10.1152/physrev.00042.2009.
    1. Grizzanti J., Corrigan R., Servizi S., Casadesus G. Amylin Signaling in Diabetes and Alzheimer's Disease: Therapy or Pathology? Journal of Neurology & Neuromedicine. 2019;4(1):12–16. doi: 10.29245/2572.942X/2019/1.1212.
    1. Fu W., Ruangkittisakul A., MacTavish D., Shi J. Y., Ballanyi K., Jhamandas J. H. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways. The Journal of Biological Chemistry. 2012;287(22):18820–18830. doi: 10.1074/jbc.M111.331181.
    1. Szabó É. R., Cservenák M., Dobolyi A. Amylin is a novel neuropeptide with potential maternal functions in the rat. The FASEB Journal. 2012;26(1):272–281. doi: 10.1096/fj.11-191841.
    1. Ghiwot Y., Fawver J. N. Islet amyloid polypeptide (IAPP): a second amyloid in alzheimer's disease. Current Alzheimer Research. 2014;11(10):928–940. doi: 10.2174/1567205011666141107124538.
    1. Rulifson I. C., Cao P., Miao L., et al. Identification of Human Islet Amyloid Polypeptide as a BACE2 Substrate. PLoS ONE. 2016;11(2):p. e0147254. doi: 10.1371/journal.pone.0147254.
    1. Mergenthaler P., Lindauer U., Dienel G. A., Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences. 2013;36(10):587–597. doi: 10.1016/j.tins.2013.07.001.
    1. Waitt A. E., Reed L., Ransom B. R., Brown A. M. Emerging roles for glycogen in the CNS. Frontiers in Molecular Neuroscience. 2017;16(10, article no. 73) doi: 10.3389/fnmol.2017.00073.
    1. Cunnane S., Nugent S., Roy M., et al. Brain fuel metabolism, aging, and Alzheimer's disease. Nutrition Journal . 2011;27(1):3–20. doi: 10.1016/j.nut.2010.07.021.
    1. Liu C., Kanekiyo T., Xu H., Bu G. Apolipoprotein e and Alzheimer disease: risk, mechanisms and therapy. Nature Reviews Neurology. 2013;9(2):106–118. doi: 10.1038/nrneurol.2012.263.
    1. Reiman E. M., Chen K., Alexander G. E., et al. Functional brain abnormalities in young adults at genetic risk for late-onset Alzheimer's dementia. Proceedings of the National Acadamy of Sciences of the United States of America. 2004;101(1):284–289. doi: 10.1073/pnas.2635903100.
    1. Lu M., Zhu X.-H., Zhang Y., Mateescu G., Chen W. Quantitative assessment of brain glucose metabolic rates using in vivo deuterium magnetic resonance spectroscopy. Journal of Cerebral Blood Flow & Metabolism. 2017;37(11):3518–3530. doi: 10.1177/0271678X17706444.
    1. Lin A., Rothman D. L. What have novel imaging techniques revealed about metabolism in the aging brain? Future Neurology. 2014;9(3):341–354. doi: 10.2217/fnl.14.13.
    1. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease: FDG-PET studies in MCI and AD. European Journal of Nuclear Medicine and Molecular Imaging. 2005;32(4):486–510. doi: 10.1007/s00259-005-1762-7.
    1. Mosconi L., Brys M., Glodzik-Sobanska L., De Santi S., Rusinek H., de Leon M. J. Early detection of Alzheimer’s disease using neuroimaging. Experimental Gerontology. 2007;42(1-2):129–138. doi: 10.1016/j.exger.2006.05.016.
    1. Tong M., Deochand C., Didsbury J., De La Monte S. M. T3D-959: a multi-faceted disease remedial drug candidate for the treatment of alzheimer's disease. Journal of Alzheimer's Disease. 2016;51(1):123–138. doi: 10.3233/JAD-151013.
    1. Didsbury J. Rapid onset of cognitive improvements in a subset of mild and moderate alzheimer’s patients treated with T3D-959: interim results of a phase 2a open label clinical trial. Proceedings of the 2016 Alzheimer’s Association International Conference-Poster Presentation; 2016;
    1. de la Monte S. M., Tong M., Schiano I., Didsbury J. Improved brain insulin/IGF signaling and reduced neuroinflammation with T3D-959 in an experimental model of sporadic alzheimer's disease. Journal of Alzheimer's Disease. 2017;55:849–864.

Source: PubMed

3
S'abonner