Mapping Technologies for Catheter Ablation of Atrial Fibrillation Beyond Pulmonary Vein Isolation

Giulio La Rosa, Jorge G Quintanilla, Ricardo Salgado, Juan José González-Ferrer, Victoria Cañadas-Godoy, Julián Pérez-Villacastín, Nicasio Pérez-Castellano, José Jalife, David Filgueiras-Rama, Giulio La Rosa, Jorge G Quintanilla, Ricardo Salgado, Juan José González-Ferrer, Victoria Cañadas-Godoy, Julián Pérez-Villacastín, Nicasio Pérez-Castellano, José Jalife, David Filgueiras-Rama

Abstract

Catheter ablation remains the most effective and relatively minimally invasive therapy for rhythm control in patients with AF. Ablation has consistently shown a reduction of arrhythmia-related symptoms and significant improvement in patients' quality of life compared with medical treatment. The ablation strategy relies on a well-established anatomical approach of effective pulmonary vein isolation. Additional anatomical targets have been reported with the aim of increasing procedure success in complex substrates. However, larger ablated areas with uncertainty of targeting relevant regions for AF initiation or maintenance are not exempt from the potential risk of complications and pro-arrhythmia. Recent developments in mapping tools and computational methods for advanced signal processing during AF have reported novel strategies to identify atrial regions associated with AF maintenance. These novel tools - although mainly limited to research series - represent a significant step forward towards the understanding of complex patterns of propagation during AF and the potential achievement of patient-tailored AF ablation strategies for the near future.

Keywords: AF; catheter ablation; instantaneous frequency modulation; mapping technologies; rotors.

Conflict of interest statement

Disclosure: DFR, JGQ, JPV and NPC are inventors of the patent #EP3636147A1. All other authors have no conflicts of interest to declare. Funding: The CNIC is supported by the Spanish Ministry of Science and Innovation and the Pro-CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). This study was supported by the European Regional Development Fund and the Spanish Ministry of Science and Innovation (PID2019-109329RB-I00). The study was also partially supported by the Fundación Interhospitalaria para la Investigación Cardiovascular and the Fundación Salud 2000.

Copyright © 2021, Radcliffe Cardiology.

Figures

Figure 1:. Panoramic and Sequential Phase-mapping Approaches…
Figure 1:. Panoramic and Sequential Phase-mapping Approaches in Experimental Settings and in Patients With AF
Figure 2:. Schematics of Basket and Sequential…
Figure 2:. Schematics of Basket and Sequential Electrogram-based Mapping Approaches in Patients With AF
Figure 3:. Other Basket Electrogram-based Mapping Systems…
Figure 3:. Other Basket Electrogram-based Mapping Systems in Patients With AF

References

    1. Hindricks G, Potpara T, Dagres N et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2021;42:373–498. doi: 10.1093/eurheartj/ehaa612.
    1. Calkins H, Hindricks G, Cappato R et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation: executive summary. Europace. 2018;20:157–208. doi: 10.1093/europace/eux275.
    1. la Rosa G, Quintanilla JG, Salgado R et al. Anatomical targets and expected outcomes of catheter-based ablation of atrial fibrillation in 2020. Pacing Clin Electrophysiol. 2020;44:341–59. doi: 10.1111/pace.14140.
    1. Sanders P, Hocini M, Jais P et al. Complete isolation of the pulmonary veins and posterior left atrium in chronic atrial fibrillation. Long-term clinical outcome. Eur Heart J. 2007;28:1862–71. doi: 10.1093/eurheartj/ehl548.
    1. Dixit S, Marchlinski FE, Lin D et al. Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study. Circ Arrhythm Electrophysiol. 2012;5:287–94. doi: 10.1161/CIRCEP.111.966226.
    1. Vogler J, Willems S, Sultan A et al. Pulmonary vein isolation versus defragmentation: the CHASE-AF Clinical Trial. J Am Coll Cardiol. 2015;66:2743–52. doi: 10.1016/j.jacc.2015.09.088.
    1. Driessen AHG, Berger WR, Krul SPJ et al. Ganglion plexus ablation in advanced atrial fibrillation: the AFACT Study. J Am Coll Cardiol. 2016;68:1155–65. doi: 10.1016/j.jacc.2016.06.036.
    1. Di Biase L, Burkhardt JD, Mohanty P et al. Left atrial appendage isolation in patients with longstanding persistent AF undergoing catheter ablation: BELIEF trial. J Am Coll Cardiol. 2016;68:1929–40. doi: 10.1016/j.jacc.2016.07.770.
    1. Rolf S, Kircher S, Arya A et al. Tailored atrial substrate modification based on low-voltage areas in catheter ablation of atrial fibrillation. Circ Arrhythm Electrophysiol. 2014;7:825–33. doi: 10.1161/CIRCEP.113.001251.
    1. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J. 1959;58:59–70. doi: 10.1016/0002-8703(59)90274-1.
    1. Quintanilla JG, Perez-Villacastin J, Perez-Castellano N et al. Mechanistic approaches to detect, target, and ablate the drivers of atrial fibrillation. Circ Arrhythm Electrophysiol. 2016;9:e002481. doi: 10.1161/CIRCEP.115.002481.
    1. Filgueiras-Rama D, Price NF, Martins RP et al. Long-term frequency gradients during persistent atrial fibrillation in sheep are associated with stable sources in the left atrium. Circ Arrhythm Electrophysiol. 2012;5:1160–7. doi: 10.1161/CIRCEP.111.969519.
    1. Yamazaki M, Avula UMR, Berenfeld O et al. Mechanistic comparison of “nearly missed” versus “on-target” rotor ablation. JACC Clinical Electrophysiology. 2015;1:256–69. doi: 10.1016/j.jacep.2015.04.015.
    1. Hansen BJ, Zhao J, Csepe TA et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J. 2015;36:2390–401. doi: 10.1093/eurheartj/ehv233.
    1. Haissaguerre M, Hocini M, Denis A et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130:530–8. doi: 10.1161/CIRCULATIONAHA.113.005421.
    1. Narayan SM, Baykaner T, Clopton P et al. Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone: extended follow-up of the CONFIRM trial (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation). J Am Coll Cardiol. 2014;63:1761–8. doi: 10.1016/j.jacc.2014.02.543.
    1. Lee P, Quintanilla JG, Alfonso-Almazan JM et al. In vivo ratiometric optical mapping enables high-resolution cardiac electrophysiology in pig models. Cardiovasc Res. 2019;115:1659–71. doi: 10.1093/cvr/cvz039.
    1. Lee P, Calvo CJ, Alfonso-Almazan JM et al. Low-cost optical mapping systems for panoramic imaging of complex arrhythmias and drug-action in translational heart models. Sci Rep. 2017;7:43217. doi: 10.1038/srep43217.
    1. Yamazaki M, Mironov S, Taravant C et al. Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation. Cardiovasc Res. 2012;94:48–57. doi: 10.1093/cvr/cvr357.
    1. Pandit SV, Jalife J. Rotors and the dynamics of cardiac fibrillation. Circ Res. 2013;112:849–62. doi: 10.1161/CIRCRESAHA.111.300158.
    1. Jalife J. Deja vu in the theories of atrial fibrillation dynamics. Cardiovasc Res. 2011;89:766–75. doi: 10.1093/cvr/cvq364.
    1. Berenfeld O, Mandapati R, Dixit S et al. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorff-perfused sheep heart. J Cardiovasc Electrophysiol. 2000;11:869–79. doi: 10.1111/j.1540-8167.2000.tb00066.x.
    1. Wellner M, Berenfeld O, Jalife J et al. Minimal principle for rotor filaments. Proc Natl Acad Sci U S A. 2002;99:8015–8. doi: 10.1073/pnas.112026199.
    1. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature. 1998;392:75–8. doi: 10.1038/32164.
    1. Narayan SM, Jalife J. Rebuttal from Sanjiv M. Narayan and Jose Jalife. J Physiol. 2014;592:3171. doi: 10.1113/jphysiol.2014.275396.
    1. Umapathy K, Nair K, Masse S et al. Phase mapping of cardiac fibrillation. Circ Arrhythm Electrophysiol. 2010;3:105–14. doi: 10.1161/CIRCEP.110.853804.
    1. Chen J, Mandapati R, Berenfeld O et al. Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc Res. 2000;48:220–32. doi: 10.1016/S0008-6363(00)00177-2.
    1. Lin CY, Lin YJ, Narayan SM et al. Comparison of phase mapping and electrogram-based driver mapping for catheter ablation in atrial fibrillation. Pacing Clin Electrophysiol. 2019;42:216–23. doi: 10.1111/pace.13573.
    1. Narayan SM, Krummen DE, Shivkumar K et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol. 2012;60:628–36. doi: 10.1016/j.jacc.2012.05.022.
    1. Lin YJ, Lo MT, Chang SL et al. Benefits of atrial substrate modification guided by electrogram similarity and phase mapping techniques to eliminate rotors and focal sources versus conventional defragmentation in persistent atrial fibrillation. JACC Clin Electrophysiol. 2016;2:667–78. doi: 10.1016/j.jacep.2016.08.005.
    1. Wilson FN, Johnston FD, Rosenbaum FF, Barker PS. On Einthoven’s triangle, the theory of unipolar electrocardiographic leads, and the interpretation of the precordial electrocardiogram. Am Heart J. 1946;32:277–310. doi: 10.1016/0002-8703(46)90791-0.
    1. Rudy Y. The forward problem of electrocardiography revisited. Circ Arrhythm Electrophysiol. 2015;8:526–8. doi: 10.1161/CIRCEP.115.003056.
    1. Cluitmans MJM, Bonizzi P, Karel JMH et al. In vivo validation of electrocardiographic imaging. JACC Clin Electrophysiol. 2017;3:232–42. doi: 10.1016/j.jacep.2016.11.012.
    1. Bear LR, LeGrice IJ, Sands GB et al. How accurate is inverse electrocardiographic mapping? A systematic in vivo evaluation. Circ Arrhythm Electrophysiol. 2018;11:e006108. doi: 10.1161/CIRCEP.117.006108.
    1. Oster HS, Taccardi B, Lux RL et al. Electrocardiographic imaging: noninvasive characterization of intramural myocardial activation from inverse-reconstructed epicardial potentials and electrograms. Circulation. 1998;97:1496–507. doi: 10.1161/01.CIR.97.15.1496.
    1. Cuculich PS, Wang Y, Lindsay BD et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122:1364–72. doi: 10.1161/CIRCULATIONAHA.110.945709.
    1. Lillo-Castellano JM, Gonzalez-Ferrer JJ, Marina-Breysse M et al. Personalized monitoring of electrical remodelling during atrial fibrillation progression via remote transmissions from implantable devices. Europace. 2020;22:704–15. doi: 10.1093/europace/euz331.
    1. Narayan SM, Krummen DE, Rappel WJ. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23:447–54. doi: 10.1111/j.1540-8167.2012.02332.x.
    1. Berenfeld O, Pertsov AM. Dynamics of intramural scroll waves in three-dimensional continuous myocardium with rotational anisotropy. J Theor Biol. 1999;199:383–94. doi: 10.1006/jtbi.1999.0965.
    1. Lalani GG, Schricker A, Gibson M et al. Atrial conduction slows immediately before the onset of human atrial fibrillation: a bi-atrial contact mapping study of transitions to atrial fibrillation. J Am Coll Cardiol. 2012;59:595–606. doi: 10.1016/j.jacc.2011.10.879.
    1. Narayan SM, Kazi D, Krummen DE et al. Repolarization and activation restitution near human pulmonary veins and atrial fibrillation initiation: a mechanism for the initiation of atrial fibrillation by premature beats. J Am Coll Cardiol. 2008;52:1222–30. doi: 10.1016/j.jacc.2008.07.012.
    1. Rappel WJ, Narayan SM. Theoretical considerations for mapping activation in human cardiac fibrillation. Chaos. 2013;23:023113. doi: 10.1063/1.4807098.
    1. Mohanty S, Gianni C, Trivedi C et al. Impact of rotor ablation in non-paroxysmal AF patients: findings from the per-protocol population of the OASIS trial at long-term follow-up. Am Heart J. 2018;205:145–8. doi: 10.1016/j.ahj.2018.05.021.
    1. Steinberg JS, Shah Y, Bhatt A et al. Focal impulse and rotor modulation: acute procedural observations and extended clinical follow-up. Heart Rhythm. 2017;14:192–7. doi: 10.1016/j.hrthm.2016.11.008.
    1. Zlochiver S, Yamazaki M, Kalifa J et al. Rotor meandering contributes to irregularity in electrograms during atrial fibrillation. Heart Rhythm. 2008;5:846–54. doi: 10.1016/j.hrthm.2008.03.010.
    1. Correa de Sa DD, Thompson N, Stinnett-Donnelly J et al. Electrogram fractionation: the relationship between spatiotemporal variation of tissue excitation and electrode spatial resolution. Circ Arrhythm Electrophysiol. 2011;4:909–16. doi: 10.1161/CIRCEP.111.965145.
    1. Ashihara T, Haraguchi R, Nakazawa K et al. The role of fibroblasts in complex fractionated electrograms during persistent/permanent atrial fibrillation: implications for electrogram-based catheter ablation. Circ Res. 2012;110:275–84. doi: 10.1161/CIRCRESAHA.111.255026.
    1. Atienza F, Calvo D, Almendral J et al. Mechanisms of fractionated electrograms formation in the posterior left atrium during paroxysmal atrial fibrillation in humans. J Am Coll Cardiol. 2011;57:1081–92. doi: 10.1016/j.jacc.2010.09.066.
    1. Verma A, Jiang CY, Betts TR et al. Approaches to catheter ablation for persistent atrial fibrillation. N Engl J Med. 2015;372:1812–22. doi: 10.1056/NEJMoa1408288.
    1. Wong KC, Paisey JR, Sopher M et al. No benefit of complex fractionated atrial electrogram ablation in addition to circumferential pulmonary vein ablation and linear ablation: benefit of complex ablation study. Circ Arrhythm Electrophysiol. 2015;8:1316–24. doi: 10.1161/CIRCEP.114.002504.
    1. Lin YJ, Lo MT, Lin C et al. Nonlinear analysis of fibrillatory electrogram similarity to optimize the detection of complex fractionated electrograms during persistent atrial fibrillation. J Cardiovasc Electrophysiol. 2013;24:280–9. doi: 10.1111/jce.12019.
    1. Berenfeld O, Oral H. The quest for rotors in atrial fibrillation: different nets catch different fishes. Heart Rhythm. 2012;9:1440–1. doi: 10.1016/j.hrthm.2012.04.029.
    1. Honarbakhsh S, Schilling RJ, Dhillon G et al. A novel mapping system for panoramic mapping of the left atrium: application to detect and characterize localized sources maintaining atrial fibrillation. JACC Clin Electrophysiol. 2018;4:124–34. doi: 10.1016/j.jacep.2017.09.177.
    1. Honarbakhsh S, Schilling RJ, Providencia R et al. Automated detection of repetitive focal activations in persistent atrial fibrillation: Validation of a novel detection algorithm and application through panoramic and sequential mapping. J Cardiovasc Electrophysiol. 2019;30:58–66. doi: 10.1111/jce.13752.
    1. Calvo D, Rubin J, Perez D et al. Ablation of rotor domains effectively modulates dynamics of human: long-standing persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2017;10:e005740. doi: 10.1161/CIRCEP.117.005740.
    1. Kochhauser S, Jiang CY, Betts TR et al. Impact of acute atrial fibrillation termination and prolongation of atrial fibrillation cycle length on the outcome of ablation of persistent atrial fibrillation: a substudy of the STAR AF II trial. Heart Rhythm. 2017;14:476–83. doi: 10.1016/j.hrthm.2016.12.033.
    1. Atienza F, Almendral J, Moreno J et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation. 2006;114:2434–42. doi: 10.1161/CIRCULATIONAHA.106.633735.
    1. Atienza F, Almendral J, Jalife J et al. Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm. Heart Rhythm. 2009;6:33–40. doi: 10.1016/j.hrthm.2008.10.024.
    1. Sanders P, Berenfeld O, Hocini M et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation. 2005;112:789–97. doi: 10.1161/CIRCULATIONAHA.104.517011.
    1. Ng J, Goldberger JJ. Understanding and interpreting dominant frequency analysis of AF electrograms. J Cardiovasc Electrophysiol. 2007;18:680–5. doi: 10.1111/j.1540-8167.2007.00832.x.
    1. Fischer G, Hintringer F. Letter regarding article by Sanders et al, “spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans”. Circulation. 2006;113:e44. doi: 10.1161/CIRCULATIONAHA.105.584417. author reply e445.
    1. Atienza F, Almendral J, Ormaetxe JM et al. Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: a noninferiority randomized multicenter RADAR-AF trial. J Am Coll Cardiol. 2014;64:2455–67. doi: 10.1016/j.jacc.2014.09.053.
    1. Quintanilla JG, Alfonso-Almazan JM, Perez-Castellano N et al. Instantaneous amplitude and frequency modulations detect the footprint of rotational activity and reveal stable driver regions as targets for persistent atrial fibrillation ablation. Circ Res. 2019;125:609–27. doi: 10.1161/CIRCRESAHA.119.314930.
    1. Seitz J, Bars C, Theodore G et al. AF ablation guided by spatiotemporal electrogram dispersion without pulmonary vein isolation: A wholly patient-tailored approach. J Am Coll Cardiol. 2017;69:303–21. doi: 10.1016/j.jacc.2016.10.065.
    1. Lau DH, Maesen B, Zeemering S et al. Stability of complex fractionated atrial electrograms: a systematic review. J Cardiovasc Electrophysiol. 2012;23:980–7. doi: 10.1111/j.1540-8167.2012.02335.x.
    1. Pappone C, Ciconte G, Vicedomini G et al. Clinical outcome of electrophysiologically guided ablation for nonparoxysmal atrial fibrillation using a novel real-time 3-dimensional mapping technique: results from a prospective randomized trial. Circ Arrhythm Electrophysiol. 2018;11:e005904. doi: 10.1161/CIRCEP.117.005904.
    1. Weerasooriya R, Khairy P, Litalien J et al. Catheter ablation for atrial fibrillation: are results maintained at 5 years of follow-up? J Am Coll Cardiol. 2011;57:160–6. doi: 10.1016/j.jacc.2010.05.061.
    1. King B, Porta-Sanchez A, Masse S et al. Effect of spatial resolution and filtering on mapping cardiac fibrillation. Heart Rhythm. 2017;14:608–15. doi: 10.1016/j.hrthm.2017.01.023.
    1. Roney CH, Cantwell CD, Bayer JD et al. Spatial resolution requirements for accurate identification of drivers of atrial fibrillation. Circ Arrhythm Electrophysiol. 2017;10:e004899. doi: 10.1161/CIRCEP.116.004899.
    1. Choudry S, Mansour M, Sundaram S et al. RADAR: a multicenter food and drug administration investigational device exemption clinical trial of persistent atrial fibrillation. Circ Arrhythm Electrophysiol. 2020;13:e007825. doi: 10.1161/CIRCEP.119.007825.
    1. Krummen DE, Hayase J, Morris DJ et al. Rotor stability separates sustained ventricular fibrillation from self-terminating episodes in humans. J Am Coll Cardiol. 2014;63:2712–21. doi: 10.1016/j.jacc.2014.03.037.
    1. Krummen DE, Hayase J, Vampola SP et al. Modifying ventricular fibrillation by targeted rotor substrate ablation: Proof-of-concept from experimental studies to clinical VF. J Cardiovasc Electrophysiol. 2015;26:1117–26. doi: 10.1111/jce.12753.
    1. Grace A, Verma A, Willems S. Dipole density mapping of atrial fibrillation. Eur Heart J. 2017;38:5–9. doi: 10.1093/eurheartj/ehw585.
    1. Grace A, Willems S, Meyer C et al. High-resolution noncontact charge-density mapping of endocardial activation. JCI Insight. 2019;4 doi: 10.1172/jci.insight.126422.
    1. Willems S, Verma A, Betts TR et al. Targeting nonpulmonary vein sources in persistent atrial fibrillation identified by noncontact charge density mapping: UNCOVER AF Trial. Circ Arrhythm Electrophysiol. 2019;12:e007233. doi: 10.1161/CIRCEP.119.007233.
    1. Zaman JA, Narayan SM. Ablation of atrial fibrillation: how can less be more? Circ Arrhythm Electrophysiol. 2015;8:1303–5. doi: 10.1161/CIRCEP.115.003495.
    1. Bellmann B, Lin T, Ruppersberg P et al. Identification of active atrial fibrillation sources and their discrimination from passive rotors using electrographical flow mapping. Clin Res Cardiol. 2018;107:1021–32. doi: 10.1007/s00392-018-1274-7.
    1. Quintanilla JG, Moreno J, Archondo T et al. KATP channel opening accelerates and stabilizes rotors in a swine heart model of ventricular fibrillation. Cardiovasc Res. 2013;99:576–85. doi: 10.1093/cvr/cvt093.
    1. Kuklik P, Zeemering S, Maesen B et al. Reconstruction of instantaneous phase of unipolar atrial contact electrogram using a concept of sinusoidal recomposition and Hilbert transform. IEEE Trans Biomed Eng. 2015;62:296–302. doi: 10.1109/TBME.2014.2350029.
    1. Parameswaran R, Voskoboinik A, Gorelik A et al. Clinical impact of rotor ablation in atrial fibrillation: a systematic review. Europace. 2018;20:1099–106. doi: 10.1093/europace/eux370.
    1. Mohanty S, Mohanty P, Trivedi C et al. Long-term outcome of pulmonary vein isolation with and without focal impulse and rotor modulation mapping: Insights from a meta-analysis. Circ Arrhythm Electrophysiol. 2018;11:e005789. doi: 10.1161/CIRCEP.117.005789.
    1. Ramirez FD, Birnie DH, Nair GM et al. Efficacy and safety of driver-guided catheter ablation for atrial fibrillation: A systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2017;28:1371–8. doi: 10.1111/jce.13313.
    1. Baykaner T, Rogers AJ, Meckler GL et al. Clinical implications of ablation of drivers for atrial fibrillation: a systematic review and meta-analysis. Circ Arrhythm Electrophysiol. 2018;11:e006119. doi: 10.1161/CIRCEP.117.006119.
    1. Swerdlow M, Tamboli M, Alhusseini MI et al. Comparing phase and electrographic flow mapping for persistent atrial fibrillation. Pacing Clin Electrophysiol. 2019;42:499–507. doi: 10.1111/pace.13649.
    1. Navara R, Leef G, Shenasa F et al. Independent mapping methods reveal rotational activation near pulmonary veins where atrial fibrillation terminates before pulmonary vein isolation. J Cardiovasc Electrophysiol. 2018;29:687–95. doi: 10.1111/jce.13446.
    1. Heijman J, Voigt N, Nattel S, Dobrev D. Cellular and molecular electrophysiology of atrial fibrillation initiation, maintenance, and progression. Circ Res. 2014;114:1483–99. doi: 10.1161/CIRCRESAHA.114.302226.

Source: PubMed

3
S'abonner