The effect of intravenous ferric carboxymaltose on cardiac reverse remodelling following cardiac resynchronization therapy-the IRON-CRT trial

Pieter Martens, Matthias Dupont, Jeroen Dauw, Petra Nijst, Lieven Herbots, Paul Dendale, Pieter Vandervoort, Liesbeth Bruckers, Wai Hong Wilson Tang, Wilfried Mullens, Pieter Martens, Matthias Dupont, Jeroen Dauw, Petra Nijst, Lieven Herbots, Paul Dendale, Pieter Vandervoort, Liesbeth Bruckers, Wai Hong Wilson Tang, Wilfried Mullens

Abstract

Aims: Iron deficiency is common in heart failure with reduced ejection fraction (HFrEF) and negatively affects cardiac function and structure. The study the effect of ferric carboxymaltose (FCM) on cardiac reverse remodelling and contractile status in HFrEF.

Methods and results: Symptomatic HFrEF patients with iron deficiency and a persistently reduced left ventricular ejection fraction (LVEF <45%) at least 6 months after cardiac resynchronization therapy (CRT) implant were prospectively randomized to FCM or standard of care (SOC) in a double-blind manner. The primary endpoint was the change in LVEF from baseline to 3-month follow-up assessed by three-dimensional echocardiography. Secondary endpoints included the change in left ventricular end-systolic (LVESV) and end-diastolic volume (LVEDV) from baseline to 3-month follow-up. Cardiac performance was evaluated by the force-frequency relationship as assessed by the slope change of the cardiac contractility index (CCI = systolic blood pressure/LVESV index) at 70, 90, and 110 beats of biventricular pacing. A total of 75 patients were randomized to FCM (n = 37) or SOC (n = 38). At baseline, both treatment groups were well matched including baseline LVEF (34 ± 7 vs. 33 ± 8, P = 0.411). After 3 months, the change in LVEF was significantly higher in the FMC group [+4.22%, 95% confidence interval (CI) +3.05%; +5.38%] than in the SOC group (-0.23%, 95% CI -1.44%; +0.97%; P < 0.001). Similarly, LVESV (-9.72 mL, 95% CI -13.5 mL; -5.93 mL vs. -1.83 mL, 95% CI -5.7 mL; 2.1 mL; P = 0.001), but not LVEDV (P = 0.748), improved in the FCM vs. the SOC group. At baseline, both treatment groups demonstrated a negative force-frequency relationship, as defined by a decrease in CCI at higher heart rates (negative slope). FCM resulted in an improvement in the CCI slope during incremental biventricular pacing, with a positive force-frequency relationship at 3 months. Functional status and exercise capacity, as measured by the Kansas City Cardiomyopathy Questionnaire and peak oxygen consumption, were improved by FCM.

Conclusions: Treatment with FCM in HFrEF patients with iron deficiency and persistently reduced LVEF after CRT results in an improvement of cardiac function measured by LVEF, LVESV, and cardiac force-frequency relationship.

Keywords: Cardiac remodelling; Contractility; Heart failure; Iron deficiency; Randomized controlled trials.

© The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/8691806/bin/ehab411f6.jpg
Overview of study design and main findings.
Figure 1
Figure 1
CONSORT flow chart of patients screened, randomized and followed up. A total of 221 met the inclusion criteria (numbers 1–6) mentioned in the Methods section and were screened for the presence of iron deficiency, which was present in 48%. Exclusion criteria included haemoglobin >15 g/dL, C-reactive protein >20 mg/L, insufficient image quality to assure three-dimensional echocardiography, and active inclusion in another randomized controlled trial or recent (

Figure 2

Change in primary and secondary…

Figure 2

Change in primary and secondary endpoints. Change at 3 months in ( A…

Figure 2
Change in primary and secondary endpoints. Change at 3 months in (A) left ventricular ejection fraction, (B) left ventricular end-systolic volume, and (C) left ventricular end-diastolic volume. FCM, ferric carboxymaltose; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; SOC, standard of care. P-values are from an ANCOVA (analysis of covariance) model with correction for baseline values.

Figure 3

Effect on the cardiac force-frequency…

Figure 3

Effect on the cardiac force-frequency relationship. ( A ) Difference in cardiac contractility…

Figure 3
Effect on the cardiac force-frequency relationship. (A) Difference in cardiac contractility index slope between ferric carboxymaltose and standard of care at follow-up. (B) Cardiac contractility index slope at baseline and follow-up in the ferric carboxymaltose group. (C) Cardiac contractility index slope at baseline and follow-up in the standard of care group. Slope evaluation was analysed using linear mixed models as described in the statistics section. FCM, ferric carboxymaltose; CCI, cardiac contractility index; CI, confidence interval; SOC, standard of care.

Figure 4

Change in tertiary endpoints. Change…

Figure 4

Change in tertiary endpoints. Change at 3 months in ( A ) peak…

Figure 4
Change in tertiary endpoints. Change at 3 months in (A) peak VO2, (B) VE/VCO2 ratio, (C) Kansas City Cardiomyopathy Questionnaire, and (D) N-terminal pro B-type natriuretic peptide. P-values are from an ANCOVA model with correction for baseline values. FCM, ferric carboxymaltose; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; NT-proBNP, N-terminal pro B-type natriuretic peptide; SOC, standard of care; VE/VCO2, slope of minute ventilation/carbon dioxide production; VO2, oxygen consumption.

Figure 5

Forest plot of subgroup analysis…

Figure 5

Forest plot of subgroup analysis for the effect of ferric carboxymaltose on the…

Figure 5
Forest plot of subgroup analysis for the effect of ferric carboxymaltose on the primary endpoint. FCM, ferric carboxymaltose; Hb, haemoglobin; LVEF, left ventricular ejection fraction; SOC, standard of care; TSAT, transferrin saturation.
Figure 2
Figure 2
Change in primary and secondary endpoints. Change at 3 months in (A) left ventricular ejection fraction, (B) left ventricular end-systolic volume, and (C) left ventricular end-diastolic volume. FCM, ferric carboxymaltose; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; SOC, standard of care. P-values are from an ANCOVA (analysis of covariance) model with correction for baseline values.
Figure 3
Figure 3
Effect on the cardiac force-frequency relationship. (A) Difference in cardiac contractility index slope between ferric carboxymaltose and standard of care at follow-up. (B) Cardiac contractility index slope at baseline and follow-up in the ferric carboxymaltose group. (C) Cardiac contractility index slope at baseline and follow-up in the standard of care group. Slope evaluation was analysed using linear mixed models as described in the statistics section. FCM, ferric carboxymaltose; CCI, cardiac contractility index; CI, confidence interval; SOC, standard of care.
Figure 4
Figure 4
Change in tertiary endpoints. Change at 3 months in (A) peak VO2, (B) VE/VCO2 ratio, (C) Kansas City Cardiomyopathy Questionnaire, and (D) N-terminal pro B-type natriuretic peptide. P-values are from an ANCOVA model with correction for baseline values. FCM, ferric carboxymaltose; KCCQ, Kansas City Cardiomyopathy Questionnaire; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; NT-proBNP, N-terminal pro B-type natriuretic peptide; SOC, standard of care; VE/VCO2, slope of minute ventilation/carbon dioxide production; VO2, oxygen consumption.
Figure 5
Figure 5
Forest plot of subgroup analysis for the effect of ferric carboxymaltose on the primary endpoint. FCM, ferric carboxymaltose; Hb, haemoglobin; LVEF, left ventricular ejection fraction; SOC, standard of care; TSAT, transferrin saturation.

References

    1. Jankowska EA, Rozentryt P, Witkowska A, Nowak J, Hartmann O, Ponikowska B, Borodulin-Nadzieja L, Banasiak W, Polonski L, Filippatos G, McMurray JJ, Anker SD, Ponikowski P. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur Heart J 2010;31:1872—1880.
    1. Klip IT, Comin-Colet J, Voors AA, Ponikowski P, Enjuanes C, Banasiak W, Lok DJ, Rosentryt P, Torrens A, Polonski L, van Veldhuisen DJ, van der Meer P, Jankowska EA. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J 2013;165:575—582.
    1. Martens P, Nijst P, Verbrugge FH, Smeets K, Dupont M, Mullens W. Impact of iron deficiency on exercise capacity and outcome in heart failure with reduced, mid-range and preserved ejection fraction. Acta Cardiol 2018;73:115—123.
    1. Hoes MF, Grote BN, Kijlstra JD, Kuipers J, Swinkels DW, Giepmans BNG, Rodenburg RJ, van Veldhuisen DJ, de Boer RA, van der Meer P. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail 2018;20:910—919.
    1. Martens P, Dupont M, Mullens W. Cardiac iron deficiency-how to refuel the engine out of fuel. Eur J Heart Fail 2018;20:920—922.
    1. Haddad S, Wang Y, Galy B, Korf-Klingebiel M, Hirsch V, Baru AM, Rostami F, Reboll MR, Heineke J, Flogel U, Groos S, Renner A, Toischer K, Zimmermann F, Engeli S, Jordan J, Bauersachs J, Hentze MW, Wollert KC, Kempf T. Iron-regulatory proteins secure iron availability in cardiomyocytes to prevent heart failure. Eur Heart J 2017;38:362—372.
    1. Martens P, Verbrugge FH, Nijst P, Dupont M, Mullens W. Limited contractile reserve contributes to poor peak exercise capacity in iron-deficient heart failure. Eur J Heart Fail 2018;20:806—808.
    1. Mullens W, Bartunek J, Tang WH, Delrue L, Herbots L, Willems R, de BB, Goethals M, Verstreken S, Vanderheyden M. Early and late effects of cardiac resynchronization therapy on force-frequency relation and contractility regulating gene expression in heart failure patients. Heart Rhythm 2008;5:52—59.
    1. Martens P, Dupont M, Dauw J, Somers F, Herbots L, Timmermans P, Verwerft J, Mullens W. Rationale and design of the IRON-CRT trial: effect of intravenous ferric carboxymaltose on reverse remodelling following cardiac resynchronization therapy. ESC Heart Fail 2019;6:1208—1215.
    1. Lacour P, Dang PL, Morris DA, Parwani AS, Doehner W, Schuessler F, Hohendanner F, Heinzel FR, Stroux A, Tschoepe C, Haverkamp W, Boldt LH, Pieske B, Blaschke F. The effect of iron deficiency on cardiac resynchronization therapy: results from the RIDE-CRT study. ESC Heart Fail 2020;7:1072—1084.
    1. Martens P, Verbrugge F, Nijst P, Dupont M, Tang WH, Mullens W. Impact of iron deficiency on response to and remodeling after cardiac resynchronization therapy. Am J Cardiol 2017;119:65—70.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P; Document Reviewers. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016;18:891—975.
    1. Ponikowski P, Kirwan B-A, Anker SD, McDonagh T, Dorobantu M, Drozdz J, Fabien V, Filippatos G, Göhring UM, Keren A, Khintibidze I, Kragten H, Martinez FA, Metra M, Milicic D, Nicolau JC, Ohlsson M, Parkhomenko A, Pascual-Figal DA, Ruschitzka F, Sim D, Skouri H, van der Meer P, Lewis BS, Comin-Colet J, von Haehling S, Cohen-Solal A, Danchin N, Doehner W, Dargie HJ, Motro M, Butler J, Friede T, Jensen KH, Pocock S, Jankowska EA, Azize G, Fernandez A, Zapata GO, Garcia Pacho P, Glenny A, Ferre Pacora F, Parody ML, Bono J, Beltrano C, Hershson A, Vita N, Luquez HA, Cestari HG, Fernandez H, Prado A, Berli M, García Durán R, Thierer J, Diez M, Lobo Marquez L, Borelli RR, Hominal MÁ, Metra M, Ameri P, Agostoni P, Salvioni A, Fattore L, Gronda E, Ghio S, Turrini F, Uguccioni M, Di Biase M, Piepoli M, Savonitto S, Mortara A, Terrosu P, Fucili A, Boriani G, Midi P, Passamonti E, Cosmi F, van der Meer P, Van Bergen P, van de Wetering M, Al-Windy NYY, Tanis W, Meijs M, Groutars RGEJ, The HKS, Kietselaer B, van Kesteren HAM, Beelen DPW, Heymeriks J, Van de Wal R, Schaap J, Emans M, Westendorp P, Nierop PR, Nijmeijer R, Manintveld OC, Dorobantu M, Darabantiu DA, Zdrenghea D, Toader DM, Petrescu L, Militaru C, Crisu D, Tomescu MC, Stanciulescu G, Rodica Dan A, Iosipescu LC, Serban DL, Drozdz J, Szachniewicz J, Bronisz M, Tycińska A, Wozakowska-Kaplon B, Mirek-Bryniarska E, Gruchała M, Nessler J, Straburzyńska-Migaj E, Mizia-Stec K, Szelemej R, Gil R, Gąsior M, Gotsman I, Halabi M, Shochat M, Shechter M, Witzling V, Zukermann R, Arbel Y, Flugelman M, Ben-Gal T, Zvi V, Kinany W, Weinstein JM, Atar S, Goland S, Milicic D, Horvat D, Tušek S, Udovicic M, Šutalo K, Samodol A, Pesek K, Artuković M, Ružić A, Šikić J, McDonagh T, Trevelyan J, Wong Y-K, Gorog D, Ray R, Pettit S, Sharma S, Kabir A, Hamdan H, Tilling L, Baracioli L, Nigro Maia L, Dutra O, Reis G, Pimentel Filho P, Saraiva JF, Kormann A, dos Santos FR, Bodanese L, Almeida D, Precoma D, Rassi S, Costa F, Kabbani S, Abdelbaki K, Abdallah C, Arnaout MS, Azar R, Chaaban S, Raed O, Kiwan G, Hassouna B, Bardaji A, Zamorano J, del Prado S, Gonzalez Juanatey JR, Ga Bosa Ojeda FI, Gomez Bueno M, Molina BD, Pascual Figal DA, Sim D, Yeo TJ, Loh SY, Soon D, Ohlsson M, Smith JG, Gerward S, Khintibidze I, Lominadze Z, Chapidze G, Emukhvari N, Khabeishvili G, Chumburidze V, Paposhvili K, Shaburishvili T, Khabeishvili G, Parhomenko O, Kraiz I, Koval O, Zolotaikina V, Malynovsky Y, Vakaliuk I, Rudenko L, Tseluyko V, Stanislavchuk M. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure: a multicentre, double-blind, randomised, controlled trial. Lancet 2020;396:1895—1904.
    1. Anker SD, Comin CJ, Filippatos G, Willenheimer R, Dickstein K, Drexler H, Luscher TF, Bart B, Banasiak W, Niegowska J, Kirwan BA, Mori C, V, Eisenhart RB, Pocock SJ, Poole-Wilson PA, Ponikowski P; FAIR-HF Trial Investigators. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med 2009;361:2436—2448.
    1. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, McDonagh TA, Parkhomenko A, Tavazzi L, Levesque V, Mori C, Roubert B, Filippatos G, Ruschitzka F, Anker SD. Rationale and design of the CONFIRM-HF study: a double-blind, randomized, placebo-controlled study to assess the effects of intravenous ferric carboxymaltose on functional capacity in patients with chronic heart failure and iron deficiency. ESC Heart Fail 2014;1:52—58.
    1. van Veldhuisen DJ, Ponikowski P, van der Meer P, Metra M, Bohm M, Doletsky A, Voors AA, Macdougall IC, Anker SD, Roubert B, Zakin L, Cohen-Solal A; EFFECT-HF Investigators. Effect of ferric carboxymaltose on exercise capacity in patients with chronic heart failure and iron deficiency. Circulation 2017;136:1374—1383.
    1. Schulz KF, Altman DG, Moher D; CONSORT Group. CONSORT 2010 Statement: updated guidelines for reporting parallel group randomised trials. J Clin Epidemiol 2010;63:834—840.
    1. Ponikowski P, van Veldhuisen DJ, Comin-Colet J, Ertl G, Komajda M, Mareev V, McDonagh T, Parkhomenko A, Tavazzi L, Levesque V, Mori C, Roubert B, Filippatos G, Ruschitzka F, Anker SD; for the CONFIRM-HF Investigators. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur Heart J 2015;36:657—668.
    1. Lang RM, Badano LP, Tsang W, Adams DH, Agricola E, Buck T, Faletra FF, Franke A, Hung J, de Isla LP, Kamp O, Kasprzak JD, Lancellotti P, Marwick TH, McCulloch ML, Monaghan MJ, Nihoyannopoulos P, Pandian NG, Pellikka PA, Pepi M, Roberson DA, Shernan SK, Shirali GS, Sugeng L, Ten Cate FJ, Vannan MA, Zamorano JL, Zoghbi WA; European Association of Echocardiography. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. Eur Heart J Cardiovasc Imaging 2012;13:1—46.
    1. Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E. Force-frequency relationship in the echocardiography laboratory: a noninvasive assessment of Bowditch treppe? J Am Soc Echocardiogr 2003;16:646—655.
    1. Toblli JE, Lombrana A, Duarte P, Di GF. Intravenous iron reduces NT-pro-brain natriuretic peptide in anemic patients with chronic heart failure and renal insufficiency. J Am Coll Cardiol 2007;50:1657—1665.
    1. Dong F, Zhang X, Culver B, Chew HG Jr., Kelley RO, Ren J. Dietary iron deficiency induces ventricular dilation, mitochondrial ultrastructural aberrations and cytochrome c release: involvement of nitric oxide synthase and protein tyrosine nitration. Clin Sci (Lond) 2005;109:277—286.
    1. Celsing F, Blomstrand E, Werner B, Pihlstedt P, Ekblom B. Effects of iron deficiency on endurance and muscle enzyme activity in man. Med Sci Sports Exerc 1986;18:156—161.
    1. Charles-Edwards G, Amaral N, Sleigh A, Ayis S, Catibog N, McDonagh T, Monaghan M, Amin-Youssef G, Kemp GJ, Shah AM, Okonko DO. Effect of iron isomaltoside on skeletal muscle energetics in patients with chronic heart failure and iron deficiency. Circulation 2019;139:2386—2398.
    1. Jankowska EA, Ponikowski P. Molecular changes in myocardium in the course of anemia or iron deficiency. Heart Fail Clin 2010;6:295—304.
    1. Melenovsky V, Petrak J, Mracek T, Benes J, Borlaug BA, Nuskova H, Pluhacek T, Spatenka J, Kovalcikova J, Drahota Z, Kautzner J, Pirk J, Houstek J. Myocardial iron content and mitochondrial function in human heart failure: a direct tissue analysis. Eur J Heart Fail 2017;19:522—530.
    1. Melenovsky V, Hlavata K, Sedivy P, Dezortova M, Borlaug BA, Petrak J, Kautzner J, Hajek M. Skeletal muscle abnormalities and iron deficiency in chronic heart failure. An exercise (31)P magnetic resonance spectroscopy study of calf muscle. Circ Heart Fail 2018;11:e004800.
    1. Bolger AP, Bartlett FR, Penston HS, O’Leary J, Pollock N, Kaprielian R, Chapman CM. Intravenous iron alone for the treatment of anemia in patients with chronic heart failure. J Am Coll Cardiol 2006;48:1225—1227.
    1. Usmanov RI, Zueva EB, Silverberg DS, Shaked M. Intravenous iron without erythropoietin for the treatment of iron deficiency anemia in patients with moderate to severe congestive heart failure and chronic kidney insufficiency. J Nephrol 2008;21:236—242.
    1. Nunez J, Minana G, Cardells I, Palau P, Llacer P, Facila L, Almenar L, Lopez-Lereu MP, Monmeneu JV, Amiguet M, Gonzalez J, Serrano A, Montagud V, Lopez-Vilella R, Valero E, Garcia-Blas S, Bodi V, Espriella-Juan R, Lupon J, Navarro J, Gorriz JL, Sanchis J, Chorro FJ, Comin-Colet J, Bayes-Genis A. Noninvasive imaging estimation of myocardial iron repletion following administration of intravenous iron: the myocardial-IRON trial. J Am Heart Assoc 2020;9:e014254.
    1. Núñez J, Monmeneu JV, Mollar A, Núñez E, Bodí V, Miñana G, García-Blas S, Santas E, Agüero J, Chorro FJ, Sanchis J, López-Lereu MP. Left ventricular ejection fraction recovery in patients with heart failure treated with intravenous iron: a pilot study. ESC Heart Fail 2016;3:293—298.
    1. Mullens W, Auricchio A, Martens P, Witte K, Cowie MR, Delgado V, Dickstein K, Linde C, Vernooy K, Leyva F, Bauersachs J, Israel CW, Lund L, Donal E, Boriani G, Jaarsma T, Berruezo A, Traykov V, Yousef Z, Kalarus Z, Nielsen JC, Steffel J, Vardas P, Coats A, Seferovic P, Edvardsen T, Heidbuchel H, Ruschitzka F, Leclercq C. Optimized Implementation of cardiac resynchronization therapy: a call for action for referral and optimization of care: a joint position statement from the Heart Failure Association (HFA), European Heart Rhythm Association (EHRA), and European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology. Eur J Heart Fail 2020;22:2349—2369.
    1. Anker SD, Kirwan BA, van Veldhuisen DJ, Filippatos G, Comin-Colet J, Ruschitzka F, Luscher TF, Arutyunov GP, Motro M, Mori C, Roubert B, Pocock SJ, Ponikowski P. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: an individual patient data meta-analysis. Eur J Heart Fail 2018;20:125—133.
    1. Tsang W, Salgo IS, Medvedofsky D, Takeuchi M, Prater D, Weinert L, Yamat M, Mor-Avi V, Patel AR, Lang RM. Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging 2016;9:769—782.

Source: PubMed

3
S'abonner