Innovative CAR-T Cell Therapy for Solid Tumor; Current Duel between CAR-T Spear and Tumor Shield

Yuna Jo, Laraib Amir Ali, Ju A Shim, Byung Ha Lee, Changwan Hong, Yuna Jo, Laraib Amir Ali, Ju A Shim, Byung Ha Lee, Changwan Hong

Abstract

Novel engineered T cells containing chimeric antigen receptors (CAR-T cells) that combine the benefits of antigen recognition and T cell response have been developed, and their effect in the anti-tumor immunotherapy of patients with relapsed/refractory leukemia has been dramatic. Thus, CAR-T cell immunotherapy is rapidly emerging as a new therapy. However, it has limitations that prevent consistency in therapeutic effects in solid tumors, which accounts for over 90% of all cancer patients. Here, we review the literature regarding various obstacles to CAR-T cell immunotherapy for solid tumors, including those that cause CAR-T cell dysfunction in the immunosuppressive tumor microenvironment, such as reactive oxygen species, pH, O2, immunosuppressive cells, cytokines, and metabolites, as well as those that impair cell trafficking into the tumor microenvironment. Next-generation CAR-T cell therapy is currently undergoing clinical trials to overcome these challenges. Therefore, novel approaches to address the challenges faced by CAR-T cell immunotherapy in solid tumors are also discussed here.

Keywords: CAR-T; T cell responses; immunotherapy; solid tumor; tumor microenvironment.

Conflict of interest statement

B.H.L. is a full-time employee of NeoImmuneTech, Inc. The other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The journey of chimeric antigen receptor T (CAR-T) cell from the bloodstream to the tumor microenvironment and the immunosuppressive challenges it faces. A CAR-T cell starts its journey in the bloodstream, which is the common site of administration. It faces challenges regarding infiltration because of the lack of cognate chemokine signaling, aberrant vasculature, and extracellular matrix (ECM) proteins, such as heparan sulfate proteoglycans (HSPGs). Eventually, after infiltration, it encounters complications in recognizing tumors because of the shortage of TSA. It further faces an inhibitory environment because of soluble immunosuppressive factors produced by tumor-associated macrophages (TAMs), regulatory T cells (Tregs), and myeloid-derived suppressor cells (MDSCs), and its cytotoxic efficacy is thus attenuated. The factors that interfere with the effective anti-tumor response of CAR-T cells are controllable, either individually or in combination, to improve CAR-T cell infiltration, persistence, and cytotoxicity. CCR, cognate chemokine receptor; TSA, tumor-specific antigen; IL, interleukin; TGFβ, transforming growth factor-β; IDO, indoleamine-2,3-dioxygenase; CAF, cancer-associated fibroblast; ROS, reactive oxygen species; MG, methylglyoxal; iNOS, inducible nitric oxide synthase.
Figure 2
Figure 2
Approaches for improved CAR-T cell therapy. Innovative approaches of CAR-T cell therapy for solid tumors. Inverted chimeric receptors convert the inhibitory signals from cytokines (IL-4 or TGFβ) or immune checkpoint to stimulatory one via intracellular stimulatory domain. Engineered expression of cognate chemokine receptors (CCRs) with matching of chemokines (CCL), fibroblast activated protein (FAP), and heparanase (HPSE) induces trafficking signals and T cell infiltration into tumor microenvironment (TME). As immune checkpoints, such as PD-1 or CTLA-4, suppress T cell activation, blocking their signals with immune checkpoint inhibitors (anti-PD-1 or anti-CTLA-4) enhances CAR-T cell cytotoxicity. Multi-specific CARs and tandem CARs target multiple tumor antigens to boost its function. Genetic engineering of responsible transcription factors (TFs) to regulatory signals of oxidative stress (ROS and iNOS) and immunosuppressive metabolites (MG and ARG1), from either tumor cells or immune suppressor cells, provides CAR-T cells the resistance to TME. NAbs or sDNR against inhibitory cytokines, such as IL-10 and TGFβ, prevent inhibitory signals via inhibitory cytokine receptors (ICR). Anti-angiogenic antibodies (anti-vascular endothelial growth factor (VEGF)) block angiogenesis and then improve T cell infiltration into the tumor bed. MSCs or CAR-T cells engineered to express survival or inflammatory cytokines, IL-2, IL-12, IL-7, and IL-15, enhance T cells function and maintenance. Combinations of these approaches in a solid tumor models enhance T cell cytotoxicity. CR: cytokine receptor, iNOS: inducible nitric oxide synthase, sDNR: soluble dominant negative receptors, NAb: neutralizing antibody, ICR; inhibitory cytokine receptor, SCR: stimulatory cytokine receptor, MSCs: mesenchymal stem cells.

References

    1. Baker S.J., Reddy E.P. Targeted inhibition of kinases in cancer therapy. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2010;77:573–586. doi: 10.1002/msj.20220.
    1. Lepore M., Mori L., De Libero G. The conventional nature of non-MHC-Restricted T cells. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.01365.
    1. Miliotou A., Papadopoulou L.C., Androulla M.N., Lefkothea P.C. CAR T-cell therapy: A new era in cancer immunotherapy. Curr. Pharm. Biotechnol. 2018;19:5–18. doi: 10.2174/1389201019666180418095526.
    1. Orlando E., Leary R., Lacey S.F., Fraietta J., Bedoya F., Ambrose D., Wilcox N., Maude S.L., Frey N.V., Levine B.L., et al. Gene expression signatures of response to anti-CD19 chimeric antigen receptor (CAR) T-cell therapy in patients with CLL and ALL. J. Clin. Oncol. 2017;35:137. doi: 10.1200/JCO.2017.35.7_suppl.137.
    1. Liu B., Yan L., Zhou M. Target selection of CAR T cell therapy in accordance with the TME for solid tumors. Am. J. Cancer Res. 2019;9:228–241.
    1. Ma S., Li X., Wang X., Cheng L., Li Z., Zhang C., Ye Z., Qian Q. Current progress in CAR-T cell therapy for solid tumors. Int. J. Biol. Sci. 2019;15:2548–2560. doi: 10.7150/ijbs.34213.
    1. Stern L.A., Jonsson V.D., Priceman S. CAR T Cell Therapy progress and challenges for solid tumors. Infect. Complicat. Cancer Patients. 2020;180:297–326.
    1. Shah N.N., Fry T.J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 2019;16:372–385. doi: 10.1038/s41571-019-0184-6.
    1. Guedan S., Calderon H., Posey A.D., Maus M.V. Engineering and design of chimeric antigen receptors. Mol. Ther. Methods Clin. Dev. 2018;12:145–156. doi: 10.1016/j.omtm.2018.12.009.
    1. Weinkove R., George P., Dasyam N., McLellan A.D. Selecting costimulatory domains for chimeric antigen receptors: Functional and clinical considerations. Clin. Transl. Immunol. 2019;8:e1049. doi: 10.1002/cti2.1049.
    1. Picanço-Castro V., Moço P., Mizukami A., Vaz L.D., Pereira M.D.S.F., Silvestre R.N., De Azevedo J.T.C., Bomfim A.D.S., Neto M.S.D.A., Malmegrim K.C.R., et al. Establishment of a simple and efficient platform for car-t cell generation and expansion: From lentiviral production to in vivo studies. Hematol. Transfus. Cell Ther. 2020;42:150–158. doi: 10.1016/j.htct.2019.06.007.
    1. Izsvak Z., Hackett P.B., Cooper L.J., Ivics Z. Translating Sleeping Beauty transposition into cellular therapies: Victories and challenges. BioEssays. 2010;32:756–767. doi: 10.1002/bies.201000027.
    1. Hu B., Ren J., Luo Y., Keith B., Young R.M., Scholler J., Zhao Y., June C.H. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20:3025–3033. doi: 10.1016/j.celrep.2017.09.002.
    1. Spolski R., Leonard W.J. Interleukin-21: A double-edged sword with therapeutic potential. Nat. Rev. Drug Discov. 2014;13:379–395. doi: 10.1038/nrd4296.
    1. Zhang L., Morgan R.A., Beane J., Zheng Z., Dudley M.E., Kassim S.H., Nahvi A.V., Ngo L.T., Sherry R.M., Phan G.Q., et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 2015;21:2278–2288. doi: 10.1158/1078-0432.CCR-14-2085.
    1. Papadouli I., Mueller-Berghaus J., Beuneu C., Ali S., Hofner B., Petavy F., Tzogani K., Miermont A., Norga K., Kholmanskikh O., et al. EMA Review of Axicabtagene Ciloleucel (Yescarta) for the treatment of diffuse large B-Cell Lymphoma. Oncology. 2020 doi: 10.1634/theoncologist.2019-0646.
    1. Ali S., Kjeken R., Niederlaender C., Markey G., Saunders T.S., Opsata M., Moltu K., Bremnes B., Grønevik E., Muusse M., et al. The european medicines agency review of Kymriah (Tisagenlecleucel) for the treatment of acute Lymphoblastic Leukemia and diffuse large B-cell Lymphoma. Oncology. 2019;25:e321–e327. doi: 10.1634/theoncologist.2019-0233.
    1. Boissonnas A., Fetler L. In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J. Exp. Med. 2007;204:345–356. doi: 10.1084/jem.20061890.
    1. Craddock J.A., Lu A., Bear A., Pule M., Brenner M.K., Rooney C.M., Foster A.E. Enhanced tumor trafficking of GD2 Chimeric antigen receptor T cells by expression of the Chemokine receptor CCR2b. J. Immunother. 2010;33:780–788. doi: 10.1097/CJI.0b013e3181ee6675.
    1. Harlin H., Meng Y., Peterson A.C., Zha Y., Tretiakova M., Slingluff C., McKee M., Gajewski T.F. Chemokine expression in melanoma metastases associated with CD8+ T-Cell recruitment. Cancer Res. 2009;69:3077–3085. doi: 10.1158/0008-5472.CAN-08-2281.
    1. Moon E.K., Carpenito C., Sun J., Wang L.-C.S., Kapoor V., Predina J., Powell D.J., Riley J.L., June C.H., Albelda S.M. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin. Cancer Res. 2011;17:4719–4730. doi: 10.1158/1078-0432.CCR-11-0351.
    1. Idorn M., Straten P. Chemokine receptors and exercise to tackle the inadequacy of T cell homing to the tumor site. Cells. 2018;7:108. doi: 10.3390/cells7080108.
    1. Slaney C.Y., Kershaw M., Darcy P.K. Trafficking of T cells into tumors. Cancer Res. 2014;74:7168–7174. doi: 10.1158/0008-5472.CAN-14-2458.
    1. Griffioen A.W. Anti-angiogenesis: Making the tumor vulnerable to the immune system. Cancer Immunol. Immunother. 2008;57:1553–1558. doi: 10.1007/s00262-008-0524-3.
    1. Schaaf M.B., Garg A.D., Agostinis P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018;9:115. doi: 10.1038/s41419-017-0061-0.
    1. Zhang J., Endres S., Kobold S. Enhancing tumor T cell infiltration to enable cancer immunotherapy. Immunotheraphy. 2019;11:201–213. doi: 10.2217/imt-2018-0111.
    1. Cho A., Howell V.M., Colvin E.K. The extracellular matrix in epithelial ovarian cancer—A piece of a puzzle. Front. Oncol. 2015;5 doi: 10.3389/fonc.2015.00245.
    1. Kerbel R.S. Reappraising antiangiogenic therapy for breast cancer. Breast. 2011;20:S56–S60. doi: 10.1016/S0960-9776(11)70295-8.
    1. Galon J., Costes A., Kirilovsky A., Mlecnik B., Lagorce-Pagès C., Tosolini M., Camus M., Zinzindohoué F., Bruneval P., Cugnenc P.-H., et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–1964. doi: 10.1126/science.1129139.
    1. Kaushik S., Pickup M.W., Weaver V. From transformation to metastasis: Deconstructing the extracellular matrix in breast cancer. Cancer Metastasis Rev. 2016;35:655–667. doi: 10.1007/s10555-016-9650-0.
    1. Kim S.T., Jeong H., Woo O.H., Seo J.H., Kim A., Lee E.S., Shin S.W., Kim Y.H., Kim J.S., Park K.H. Tumor-infiltrating Lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am. J. Clin. Oncol. 2013;36:224–231. doi: 10.1097/COC.0b013e3182467d90.
    1. Kmiecik J., Poli A., Brons N.H., Waha A., Eide G.E., Enger P. Øyvind; Zimmer, J.; Chekenya, M. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J. Neuroimmunol. 2013;264:71–83. doi: 10.1016/j.jneuroim.2013.08.013.
    1. Li J., Wientjes M.G., Au J.L.-S. Pancreatic cancer: Pathobiology, treatment options, and drug delivery. AAPS J. 2010;12:223–232. doi: 10.1208/s12248-010-9181-5.
    1. Piersma S.J., Jordanova E.S., Van Poelgeest M.I., Kwappenberg K.M., Van Der Hulst J.M., Drijfhout J.W., Melief C.J., Kenter G., Fleuren G.J., Offringa R., et al. High number of intraepithelial CD8+ tumor-infiltrating lymphocytes is associated with the absence of lymph node metastases in patients with large early-stage cervical cancer. Cancer Res. 2007;67:354–361. doi: 10.1158/0008-5472.CAN-06-3388.
    1. Zhang E., Gu J., Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol. Cancer. 2018;17:7. doi: 10.1186/s12943-018-0759-3.
    1. Martinet L., Le Guellec S., Filleron T., Lamant L., Meyer N., Rochaix P., Garrido I., Girard J.-P. High endothelial venules (HEVs) in human melanoma lesions. OncoImmunology. 2012;1:829–839. doi: 10.4161/onci.20492.
    1. Digre A., Singh K., Åbrink M., Reijmers R.M., Sandler S., Vlodavsky I., Li J.-P. Overexpression of heparanase enhances T lymphocyte activities and intensifies the inflammatory response in a model of murine rheumatoid arthritis. Sci. Rep. 2017;7:46229. doi: 10.1038/srep46229.
    1. Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N. Extracellular matrix structure. Adv. Drug Deliv. Rev. 2016;97:4–27. doi: 10.1016/j.addr.2015.11.001.
    1. Shrimali R.K., Yu Z., Theoret M.R., Chinnasamy D., Restifo N.P., Rosenberg S.A. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70:6171–6180. doi: 10.1158/0008-5472.CAN-10-0153.
    1. Caruana I., Savoldo B., Hoyos V., Weber G., Liu H., Kim E.S., Ittmann M.M., Marchetti D., Dotti G. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 2015;21:524–529. doi: 10.1038/nm.3833.
    1. Burga R.A., Thorn M., Point G.R., Guha P., Nguyen C.T., Licata L.A., DeMatteo R.P., Ayala A., Espat N.J., Junghans R.P., et al. Liver myeloid-derived suppressor cells expand in response to liver metastases in mice and inhibit the anti-tumor efficacy of anti-CEA CAR-T. Cancer Immunol. Immunother. 2015;64:817–829. doi: 10.1007/s00262-015-1692-6.
    1. Facciabene A., Peng X., Hagemann I.S., Balint K., Barchetti A., Wang L.-P., Gimotty P.A., Gilks C.B., Lal P., Zhang L., et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature. 2011;475:226–230. doi: 10.1038/nature10169.
    1. Newick K., O’Brien S., Moon E., Albelda S.M. CAR T cell Therapy for solid tumors. Annu. Rev. Med. 2017;68:139–152. doi: 10.1146/annurev-med-062315-120245.
    1. Yao X., Ahmadzadeh M., Lu Y.-C., Liewehr D.J., Dudley M.E., Liu F., Schrump D.S., Steinberg S.M., Rosenberg S.A., Robbins P.F. Levels of peripheral CD4+FoxP3+ regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood. 2012;119:5688–5696. doi: 10.1182/blood-2011-10-386482.
    1. Gabrilovich D.I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 2009;9:162–174. doi: 10.1038/nri2506.
    1. Kang C., Jeong S.-Y., Song S.Y., Choi E.K. The emerging role of myeloid-derived suppressor cells in radiotherapy. Radiat. Oncol. J. 2020;38:1–10. doi: 10.3857/roj.2019.00640.
    1. Cassetta L., Pollard J.W. Tumor-associated macrophages. Curr. Biol. 2020;30:R246–R248. doi: 10.1016/j.cub.2020.01.031.
    1. Kosti P., Maher J., Arnold J.N. Perspectives on Chimeric antigen receptor T-cell immunotherapy for solid tumors. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.01104.
    1. Anderson A.C., Joller N., Kuchroo V.K. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004. doi: 10.1016/j.immuni.2016.05.001.
    1. Buchbinder E.I., Desai A. CTLA-4 and PD-1 Pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 2016;39:98–106. doi: 10.1097/COC.0000000000000239.
    1. Parry R.V., Chemnitz J.M. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 2005;25:9543–9553. doi: 10.1128/MCB.25.21.9543-9553.2005.
    1. Johnson L.A., June C.H. Driving gene-engineered T cell immunotherapy of cancer. Cell Res. 2016;27:38–58. doi: 10.1038/cr.2016.154.
    1. Maus M.V., Haas A.R., Beatty G.L., Albelda S.M., Levine B.L., Liu X., Zhao Y., Kalos M., June C.H. T-cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res. 2013;1:26–31. doi: 10.1158/2326-6066.CIR-13-0006.
    1. Mirzaei H.R., Rodriguez A., Shepphird J., Brown C., Badie B. Chimeric Antigen Receptors T cell therapy in solid tumor: Challenges and clinical applications. Front. Immunol. 2017;8 doi: 10.3389/fimmu.2017.01850.
    1. Butte M.J., Pena-Cruz V., Kim M.-J., Freeman G.J., Sharpe A.H. Interaction of human PD-L1 and B7-1. Mol. Immunol. 2008;45:3567–3572. doi: 10.1016/j.molimm.2008.05.014.
    1. Freeman G.J., Long A.J., Iwai Y., Bourque K., Chernova T., Nishimura H., Fitz L.J., Malenkovich N., Okazaki T., Byrne M.C., et al. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 2000;192:1027–1034. doi: 10.1084/jem.192.7.1027.
    1. Dong Y., Sun Q., Zhang X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget. 2016;8:2171–2186. doi: 10.18632/oncotarget.13895.
    1. Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD-1 and Its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008;26:677–704. doi: 10.1146/annurev.immunol.26.021607.090331.
    1. Chambers C.A., Kuhns M.S. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 2001;19:565–594. doi: 10.1146/annurev.immunol.19.1.565.
    1. Egen J.G., Kuhns M.S., Allison J.P. CTLA-4: New insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 2002;3:611–618. doi: 10.1038/ni0702-611.
    1. McGowan E., Lin Q., Ma G., Yin H., Chen S., Lin Y. PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomed. Pharmacother. 2020;121:109625. doi: 10.1016/j.biopha.2019.109625.
    1. Joller N., Kuchroo V.K. Tim-3, Lag-3, and TIGIT. Curr. Top. Microbiol. Immunol. 2017;410:127–156.
    1. Liou G.-Y., Storz P. Reactive oxygen species in cancer. Free. Radic. Res. 2010;44:479–496. doi: 10.3109/10715761003667554.
    1. Weinberg F., Ramnath N., Nagrath D. Reactive oxygen species in the tumor microenvironment: An overview. Cancers. 2019;11:1191. doi: 10.3390/cancers11081191.
    1. Yang Z., Guo J., Weng L., Tang W., Jin S., Ma W. Myeloid-derived suppressor cells—New and exciting players in lung cancer. J. Hematol. Oncol. 2020;13:1–17. doi: 10.1186/s13045-020-0843-1.
    1. Ohl K., Tenbrock K. Reactive oxygen species as regulators of MDSC-mediated immune suppression. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.02499.
    1. Corzo C.A., Cotter M.J., Cheng P., Cheng F., Kusmartsev S., Sotomayor E., Padhya T., McCaffrey T.V., McCaffrey J.C., Gabrilovich D.I. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 2009;182:5693–5701. doi: 10.4049/jimmunol.0900092.
    1. Mazzoni A., Bronte V., Visintin A., Spitzer J.H., Apolloni E., Serafini P., Zanovell P., Segal D.M. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 2002;168:689–695. doi: 10.4049/jimmunol.168.2.689.
    1. Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017;2017:1–13. doi: 10.1155/2017/8416763.
    1. Klaunig J.E. Oxidative Stress and Cancer. Curr. Pharm. Des. 2019;24:4771–4778. doi: 10.2174/1381612825666190215121712.
    1. Baumann T., Dunkel A., Schmid C., Schmitt S., Hiltensperger M., Lohr K., Laketa V., Donakonda S., Ahting U., Lorenz-Depiereux B., et al. Regulatory myeloid cells paralyze T cells through cell-cell transfer of the metabolite methylglyoxal. Nat. Immunol. 2020;21:555–566. doi: 10.1038/s41590-020-0666-9.
    1. De La Cruz-López K.G., Castro-Muñoz L.J., Reyes-Hernández D.O., García-Carrancá A., Manzo-Merino J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. 2019;9:1143. doi: 10.3389/fonc.2019.01143.
    1. Arab S., Hadjati J. Adenosine blockage in tumor microenvironment and improvement of cancer immunotherapy. Immune Netw. 2019;19:e23. doi: 10.4110/in.2019.19.e23.
    1. Huang Q., Xia J. MiR-153 suppresses IDO1 expression and enhances CAR T cell immunotherapy. J. Hematol. Oncol. 2018;11:58. doi: 10.1186/s13045-018-0600-x.
    1. Rodríguez P.C. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 2004;64:5839–5849. doi: 10.1158/0008-5472.CAN-04-0465.
    1. Bronte V., Serafini P., Mazzoni A., Segal D.M., Zanovell P. L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol. 2003;24:301–305. doi: 10.1016/S1471-4906(03)00132-7.
    1. Cheng J., Zhao L., Zhang Y., Qin Y., Guan Y., Zhang T., Liu C., Zhou J. Understanding the mechanisms of resistance to CAR T-Cell therapy in malignancies. Front. Oncol. 2019;9 doi: 10.3389/fonc.2019.01237.
    1. Han S., Latchoumanin O., Wu G., Zhou G., Hebbard L., George J., Qiao L. Recent clinical trials utilizing chimeric antigen receptor T cells therapies against solid tumors. Cancer Lett. 2017;390:188–200. doi: 10.1016/j.canlet.2016.12.037.
    1. Juillerat A., Marechal A., Filhol J.M., Valogne Y., Valton J., Duclert A., Duchateau P., Poirot L. An oxygen sensitive self-decision making engineered CAR T-cell. Sci. Rep. 2017;7:39833. doi: 10.1038/srep39833.
    1. Bollong M.J., Lee G., Coukos J.S., Yun H., Zambaldo C., Chang J.W., Chin E.N., Ahmad I., Chatterjee A.K., Lairson L.L., et al. A metabolite-derived protein modification integrates glycolysis with KEAP1–NRF2 signalling. Nature. 2018;562:600–604. doi: 10.1038/s41586-018-0622-0.
    1. Nokin M.J., Durieux F. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis. eLife. 2016;5:e19375. doi: 10.7554/eLife.19375.
    1. Xu X., Gnanaprakasam J.N.R., Sherman J., Wang R. A Metabolism toolbox for CAR T therapy. Front. Oncol. 2019;9 doi: 10.3389/fonc.2019.00322.
    1. Bollard C.M., Tripic T., Cruz C.R., Dotti G., Gottschalk S., Torrano V., Dakhova O., Carrum G., Ramos C.A., Liu H., et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed hodgkin lymphoma. J. Clin. Oncol. 2018;36:1128–1139. doi: 10.1200/JCO.2017.74.3179.
    1. Chinnasamy D., Yu Z., Kerkar S.P., Zhang L., Morgan R.A., Restifo N.P., Rosenberg S.A. Local delivery of lnterleukin-12 Using T cells targeting VEGF Receptor-2 Eradicates multiple vascularized tumors in mice. Clin. Cancer Res. 2012;18:1672–1683. doi: 10.1158/1078-0432.CCR-11-3050.
    1. Kloss C.C., Lee J. Dominant-negative TGF-beta receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate cancer eradication. Mol. Ther. 2018;26:1855–1866. doi: 10.1016/j.ymthe.2018.05.003.
    1. Koneru M., Purdon T., Spriggs D., Koneru S., Brentjens R.J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. OncoImmunology. 2015;4:e994446. doi: 10.4161/2162402X.2014.994446.
    1. Wallace A., Kapoor V., Sun J., Mrass P., Weninger W., Heitjan D.F., June C., Kaiser L.R., Ling L.E., Albelda S.M. Transforming growth factor-beta receptor blockade augments the effectiveness of adoptive T-cell therapy of established solid cancers. Clin. Cancer Res. 2008;14:3966–3974. doi: 10.1158/1078-0432.CCR-08-0356.
    1. Law A.M.K., Valdes-Mora F., Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 2020;9:561. doi: 10.3390/cells9030561.
    1. Taylor A., Verhagen J., Blaser K., Akdis M., Akdis C.A. Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of T regulatory cells. Immunology. 2006;117:433–442. doi: 10.1111/j.1365-2567.2006.02321.x.
    1. Massagué J. TGFbeta in cancer. Cell. 2008;134:215–230. doi: 10.1016/j.cell.2008.07.001.
    1. Yeh H.-W., Lee S.-S., Chang C.-Y., Lang Y.-D., Jou Y.-S. A new switch for TGFβ in cancer. Cancer Res. 2019;79:3797–3805. doi: 10.1158/0008-5472.CAN-18-2019.
    1. Dahmani A., Delisle J.-S. TGF-β in T cell biology: Implications for cancer immunotherapy. Cancers. 2018;10:194. doi: 10.3390/cancers10060194.
    1. Dennis K.L., Blatner N.R., Gounari F., Khazaie K. Current status of interleukin-10 and regulatory T-cells in cancer. Curr. Opin. Oncol. 2013;25:637–645. doi: 10.1097/CCO.0000000000000006.
    1. Hong I.-S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp. Mol. Med. 2016;48:e242. doi: 10.1038/emm.2016.64.
    1. Bailey K.M., Wojtkowiak J.W., Hashim A.I., Gillies R.J. Targeting the metabolic microenvironment of tumors. HIV-1 Mol. Biol. Pathog. 2012;65:63–107. doi: 10.1016/B978-0-12-397927-8.00004-X.
    1. Zhang X., Lin Y., Gillies R.J. Tumor pH and its measurement. J. Nucl. Med. 2010;51:1167–1170. doi: 10.2967/jnumed.109.068981.
    1. Zhou Y., Chen X., Cao J., Gao H. Overcoming the biological barriers in the tumor microenvironment for improving drug delivery and efficacy. J. Mater. Chem. B. 2020 doi: 10.1039/D0TB00649A.
    1. Kato Y., Ozawa S., Miyamoto C., Maehata Y., Suzuki A., Maeda T., Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013;13:89. doi: 10.1186/1475-2867-13-89.
    1. Zou W., Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat. Rev. Immunol. 2008;8:467–477. doi: 10.1038/nri2326.
    1. Martinez M., Moon E.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.00128.
    1. Sfanos K.S., Bruno T.C., Meeker A.K., De Marzo A.M., Isaacs W.B., Drake C.G. Human prostate-infiltrating CD8+T lymphocytes are oligoclonal and PD-1+ Prostate. 2009;69:1694–1703. doi: 10.1002/pros.21020.
    1. Ahmadzadeh M. Johnson, L.A. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Clin. Immunol. 2009;131:S38. doi: 10.1016/j.clim.2009.03.108.
    1. Kusmartsev S., Nefedova Y., Yoder D., I Gabrilovich D. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J. Immunol. 2004;172:989–999. doi: 10.4049/jimmunol.172.2.989.
    1. Xiang H., Ramil C.P., Hai J., Zhang C., Wang H., Watkins A.A., Afshar R., Georgiev P., Sze M.A., Song X.S., et al. Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung Squamous cell Carcinoma. Cancer Immunol. Res. 2020;8:436–450. doi: 10.1158/2326-6066.CIR-19-0507.
    1. Siska P.J., Beckermann K.E., Mason F.M., Andrejeva G., Greenplate A.R., Sendor A.B., Chiang Y.-C.J., Corona A.L., Gemta L.F., Vincent B.G., et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight. 2017;2 doi: 10.1172/jci.insight.93411.
    1. Wang Y., Jiang H. An IL-4/21 Inverted Cytokine receptor improving CAR-T cell potency in immunosuppressive solid-tumor microenvironment. Front. Immunol. 2019;10:1691. doi: 10.3389/fimmu.2019.01691.
    1. Schurich A., Magalhaes I., Mattsson J. Metabolic regulation of CAR T cell function by the hypoxic microenvironment in solid tumors. Immunotheraphy. 2019;11:335–345. doi: 10.2217/imt-2018-0141.
    1. Zhao L., Cao Y.J. Engineered T Cell Therapy for Cancer in the Clinic. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.02250.
    1. Richman S.A., Nunez-Cruz S., Moghimi B., Li L., Gershenson Z.T., Mourelatos Z., Barrett D.M., Grupp S.A., Milone M.C. High-affinity GD2-Specific CAR T cells induce fatal encephalitis in a preclinical neuroblastoma model. Cancer Immunol. Res. 2017;6:36–46. doi: 10.1158/2326-6066.CIR-17-0211.
    1. Morgan R.A., Yang J.C., Kitano M., E Dudley M., Laurencot C.M., A Rosenberg S. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 2010;18:843–851. doi: 10.1038/mt.2010.24.
    1. Lamers C.H.J., Sleijfer S., Van Steenbergen S., Van Elzakker P., Van Krimpen B., Groot C., Vulto A., Bakker M.D., Oosterwijk E., Debets R., et al. Treatment of metastatic renal cell Carcinoma with CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity. Mol. Ther. 2013;21:904–912. doi: 10.1038/mt.2013.17.
    1. Li H., Ding J., Lu M., Liu H., Miao Y., Li L., Wang G., Zheng J., Pei D., Zhang Q. CAIX-specific CAR-T cells and Sunitinib show synergistic effects against metastatic renal cancer models. J. Immunother. 2020;43:16–28. doi: 10.1097/CJI.0000000000000301.
    1. Ackerman D., Simon M.C. Hypoxia, lipids, and cancer: Surviving the harsh tumor microenvironment. Trends Cell Biol. 2014;24:472–478. doi: 10.1016/j.tcb.2014.06.001.
    1. Vaupel P., Mayer A. Hypoxia in cancer: Significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26:225–239. doi: 10.1007/s10555-007-9055-1.
    1. Brown J.M., Wilson W.R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004;4:437–447. doi: 10.1038/nrc1367.
    1. Xia A.-L., Wang X.-C., Lu Y.-J., Lu X.-J., Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: Challenges and opportunities. Oncotarget. 2017;8:90521–90531. doi: 10.18632/oncotarget.19361.
    1. Van Schalkwyk M.C.I., Papa S., Jeannon J.-P., Urbano T.G., Spicer J.F., Maher J. Design of a Phase I clinical trial to evaluate intratumoral delivery of ErbB-targeted chimeric antigen receptor T-cells in locally advanced or recurrent head and neck cancer. Hum. Gene Ther. Clin. Dev. 2013;24:134–142. doi: 10.1089/humc.2013.144.
    1. Choi B.D., Suryadevara C.M., Gedeon P., Ii J.E.H., Sanchez-Perez L., Bigner D.D., Sampson J.H., Herndon J.E. Intracerebral delivery of a third generation EGFRvIII-specific chimeric antigen receptor is efficacious against human glioma. J. Clin. Neurosci. 2013;21:189–190. doi: 10.1016/j.jocn.2013.03.012.
    1. Sridhar P., Petrocca F. Regional delivery of chimeric antigen receptor (CAR) T-cells for cancer therapy. Cancers. 2017;9:92. doi: 10.3390/cancers9070092.
    1. Smith T.T., Moffett H.F., Stephan S.B., Opel C.F., Dumigan A., Jiang X., Pillarisetty V.G., Pillai S.P.S., Wittrup K.D., Stephan M.T. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Investig. 2017;127:2176–2191. doi: 10.1172/JCI87624.
    1. Vignali D., Kallikourdis M. Improving homing in T cell therapy. Cytokine Growth Factor Rev. 2017;36:107–116. doi: 10.1016/j.cytogfr.2017.06.009.
    1. Chow M.T., Luster A.D. Chemokines in cancer. Cancer Immunol. Res. 2014;2:1125–1131. doi: 10.1158/2326-6066.CIR-14-0160.
    1. Lacy P. Editorial: Secretion of Cytokines and Chemokines by innate immune cells. Front. Immunol. 2015;6 doi: 10.3389/fimmu.2015.00190.
    1. McGettrick H.M., Butler L.M., Buckley C.D., Rainger G.E., Nash G.B. Tissue stroma as a regulator of leukocyte recruitment in inflammation. J. Leukoc. Biol. 2012;91:385–400. doi: 10.1189/jlb.0911458.
    1. Moon E.K., Wang L.-C.S., Bekdache K., Lynn R.C., Lo A., Thorne S.H., Albelda S.M. Intra-tumoral delivery of CXCL11 via a vaccinia virus, but not by modified T cells, enhances the efficacy of adoptive T cell therapy and vaccines. OncoImmunology. 2018;7:e1395997. doi: 10.1080/2162402X.2017.1395997.
    1. Kershaw M.H., Wang G., Westwood J.A., Pachynski R.K., Tiffany H.L., Marincola F.M., Wang E., Young H.A., Murphy P.M., Hwu P. Redirecting migration of T cells to Chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther. 2002;13:1971–1980. doi: 10.1089/10430340260355374.
    1. Di Stasi A., De Angelis B., Rooney C.M., Zhang L., Mahendravada A., Foster A.E., Heslop H.E., Brenner M.K., Dotti G., Savoldo B. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113:6392–6402. doi: 10.1182/blood-2009-03-209650.
    1. Perera L.P., Zhang M., Nakagawa M., Petrus M.N., Maeda M., Kadin M.E., Waldmann T.A., Perera P.-Y. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am. J. Hematol. 2017;92:892–901. doi: 10.1002/ajh.24794.
    1. Ishitsuka K., Yurimoto S., Kawamura K., Tsuji Y., Iwabuchi M., Takahashi T., Tobinai K. Safety and efficacy of mogamulizumab in patients with adult T-cell leukemia-lymphoma in Japan: Interim results of postmarketing all-case surveillance. Hematol. Oncol. 2017;35:252. doi: 10.1002/hon.2438_116.
    1. Kiesgen S., Chicaybam L., Chintala N.K., Adusumilli P. Chimeric antigen receptor (CAR) T-cell therapy for Thoracic Malignancies. J. Thorac. Oncol. 2017;13:16–26. doi: 10.1016/j.jtho.2017.10.001.
    1. Santos A.M., Jung J., Aziz N., Kissil J.L., Puré E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Investig. 2009;119:3613–3625. doi: 10.1172/JCI38988.
    1. Fu X., Rivera A., Tao L., Zhang X. Genetically modified T cells targeting neovasculature efficiently destroy tumor blood vessels, shrink established solid tumors and increase nanoparticle delivery. Int. J. Cancer. 2013;133:2483–2492. doi: 10.1002/ijc.28269.
    1. Gowrishankar K., Birtwistle L., Micklethwaite K.P. Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm. Genome. 2018;29:739–756. doi: 10.1007/s00335-018-9756-5.
    1. Mohammed S., Sukumaran S., Bajgain P., Watanabe N., Heslop H.E., Rooney C.M., Brenner M.K., Fisher W.E., Leen A.M., Vera J.F. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol. Ther. 2017;25:249–258. doi: 10.1016/j.ymthe.2016.10.016.
    1. Liu X., Ranganathan R., Jiang S., Fang C., Sun J., Kim S., Newick K., Lo A., June C.H., Zhao Y., et al. A chimeric switch-receptor targeting PD1 augments the efficacy of second-generation CAR T cells in advanced solid tumors. Cancer Res. 2016;76:1578–1590. doi: 10.1158/0008-5472.CAN-15-2524.
    1. Chang Z.L., Lorenzini M.H., Chen X., Tran U., Bangayan N.J., Chen Y.Y. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Methods. 2018;14:317–324. doi: 10.1038/nchembio.2565.
    1. Fedorov V.D., Themeli M., Sadelain M. PD-1- and CTLA-4-Based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 2013;5:215ra172. doi: 10.1126/scitranslmed.3006597.
    1. Wu A., Drake V., Huang H.-S., Chiu S., Zheng L. Reprogramming the tumor microenvironment: Tumor-induced immunosuppressive factors paralyze T cells. OncoImmunology. 2015;4:e1016700. doi: 10.1080/2162402X.2015.1016700.
    1. Bollard C.M., Rössig C., Calonge M.J., Huls M.H., Wagner H.-J., Massagué J., Brenner M.K., Heslop H.E., Rooney C.M. Adapting a transforming growth factor β–related tumor protection strategy to enhance antitumor immunity. Blood. 2002;99:3179–3187. doi: 10.1182/blood.V99.9.3179.
    1. Foster A.E., Dotti G. Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor. J. Immunother. 2008;31:500–505. doi: 10.1097/CJI.0b013e318177092b.
    1. Löffek S. Transforming of the tumor microenvironment: Implications for TGF-β inhibition in the context of immune-checkpoint therapy. J. Oncol. 2018;2018 doi: 10.1155/2018/9732939.
    1. Li S., Siriwon N., Zhang X., Yang S., Jin T., He F., Kim Y.J., Mac J., Lu Z., Wang S., et al. Enhanced cancer immunotherapy by chimeric antigen receptor–modified T cells engineered to secrete checkpoint inhibitors. Clin. Cancer Res. 2017;23:6982–6992. doi: 10.1158/1078-0432.CCR-17-0867.
    1. John L.B., Devaud C., Duong C.P.M., Yong C.S., Beavis P.A., Haynes N.M., Chow M.T., Smyth M.J., Kershaw M., Darcy P.K. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 2013;19:5636–5646. doi: 10.1158/1078-0432.CCR-13-0458.
    1. Ren J., Liu X., Fang C., Jiang S., June C.H., Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 2016;23:2255–2266. doi: 10.1158/1078-0432.CCR-16-1300.
    1. Menger L., Sledzinska A., Bergerhoff K., Vargas F.A., Smith J., Poirot L., Pule M., Herrero J., Peggs K.S., Quezada S.A. TALEN-mediated inactivation of PD-1 in tumor-reactive Lymphocytes promotes Intratumoral T-cell persistence and rejection of established tumors. Cancer Res. 2016;76:2087–2093. doi: 10.1158/0008-5472.CAN-15-3352.
    1. Morgan M., Schambach A. Engineering CAR-T cells for improved function against solid tumors. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.02493.
    1. Lynn R.C., Weber E.W., Sotillo E., Gennert D., Xu P., Good Z., Anbunathan H., Lattin J., Jones R., Tieu V., et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature. 2019;576:293–300. doi: 10.1038/s41586-019-1805-z.
    1. Krenciute G., Prinzing B.L. Transgenic expression of IL15 improves Antiglioma activity of IL13Ralpha2-CAR T cells but results in antigen loss variants. Cancer Immunol. Res. 2017;5:571–581. doi: 10.1158/2326-6066.CIR-16-0376.
    1. Adachi K., Kano Y., Nagai T., Okuyama N., Sakoda Y., Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 2018;36:346–351. doi: 10.1038/nbt.4086.
    1. Zhao Z., Li Y., Liu W., Li X. Engineered IL-7 receptor enhances the therapeutic effect of AXL-CAR-T cells on triple-negative breast cancer. BioMed Res. Int. 2020;2020:1–13. doi: 10.1155/2020/4795171.
    1. Hoyos V., Savoldo B., Quintarelli C., Mahendravada A., Zhang M., Vera J., Heslop H.E., Rooney C.M., Brenner M.K., Dotti G. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010;24:1160–1170. doi: 10.1038/leu.2010.75.
    1. Nishio N., Dotti G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. OncoImmunology. 2015;4 doi: 10.4161/21505594.2014.988098.
    1. Alizadeh D., Wong R.A., Yang X., Wang D., Pecoraro J.R., Kuo C.-F., Aguilar B., Qi Y., Ann D.K., Starr R., et al. IL15 Enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 2019;7:759–772. doi: 10.1158/2326-6066.CIR-18-0466.
    1. Cieri N., Camisa B., Cocchiarella F., Forcato M., Oliveira G., Provasi E., Bondanza A., Bordignon C., Peccatori J., Ciceri F., et al. IL-7 and IL-15 instruct the generation of human memory stem T cells from naive precursors. Blood. 2013;121:573–584. doi: 10.1182/blood-2012-05-431718.
    1. Heczey A., Louis C.U., Savoldo B., Dakhova O., Durett A., Grilley B., Liu H., Wu M.F., Mei Z., Gee A., et al. CAR T cells administered in combination with Lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 2017;25:2214–2224. doi: 10.1016/j.ymthe.2017.05.012.
    1. Suryadevara C.M., Desai R., Abel M.L., Riccione K.A., Batich K.A., Shen S.H., Chongsathidkiet P., Gedeon P.C., Elsamadicy A.A., Snyder D.J., et al. Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. OncoImmunology. 2018;7:e1434464. doi: 10.1080/2162402X.2018.1434464.
    1. Bagley S.J., O’Rourke D.M. Clinical investigation of CAR T cells for solid tumors: Lessons learned and future directions. Pharmacol. Ther. 2020;205:107419. doi: 10.1016/j.pharmthera.2019.107419.
    1. Hombach A.A., Geumann U., Günther C., Hermann F.G., Abken H. IL7-IL12 engineered Mesenchymal stem cells (MSCs) improve a CAR T cell attack against colorectal cancer cells. Cells. 2020;9:873. doi: 10.3390/cells9040873.
    1. Sun S., Hao H., Yang G., Zhang Y., Fu Y. Immunotherapy with CAR-Modified T cells: Toxicities and overcoming strategies. J. Immunol. Res. 2018;2018 doi: 10.1155/2018/2386187.
    1. Jackson H.J., Brentjens R.J. Overcoming antigen escape with CAR T-cell therapy. Cancer Discov. 2015;5:1238–1240. doi: 10.1158/-15-1275.
    1. Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J., Chew A., Gonzalez V.E., Zheng Z., Lacey S.F., et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New Engl. J. Med. 2014;371:1507–1517. doi: 10.1056/NEJMoa1407222.
    1. Han X., Wang Y., Wei J., Han W. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy. J. Hematol. Oncol. 2019;12:1–10. doi: 10.1186/s13045-019-0813-7.
    1. Ruella M., Barrett D.M., Kenderian S.S., Shestova O., Hofmann T.J., Perazzelli J., Klichinsky M., Aikawa V., Nazimuddin F., Kozlowski M., et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J. Clin. Investig. 2016;126:3814–3826. doi: 10.1172/JCI87366.
    1. Feng K.-C., Guo Y.-L., Liu Y., Dai H.-R., Wang Y., Lv H.-Y., Huang J.-H., Yang Q.-M., Han W. Cocktail treatment with EGFR-specific and CD133-specific chimeric antigen receptor-modified T cells in a patient with advanced cholangiocarcinoma. J. Hematol. Oncol. 2017;10:4. doi: 10.1186/s13045-016-0378-7.
    1. Hombach A., Rappl G., Abken H. Blocking CD30 on T Cells by a Dual Specific CAR for CD30 and Colon Cancer Antigens Improves the CAR T cell response against CD30- Tumors. Mol. Ther. 2019;27:1825–1835. doi: 10.1016/j.ymthe.2019.06.007.
    1. Hegde M., Mukherjee M., Grada Z., Pignata A., Landi D., Navai S., Wakefield A., Fousek K., Bielamowicz K., Chow K.K., et al. Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J. Clin. Investig. 2016;126:3036–3052. doi: 10.1172/JCI83416.
    1. Ma L., Dichwalkar T., Chang J.Y., Cossette B., Garafola D., Zhang A.Q., Fichter M., Wang C., Liang S., Silva M., et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science. 2019;365:162–168.
    1. Becerra C.R., Hoof P., Paulson A.S., Manji G.A., Gardner O., Malankar A., Shaw J., Blass D., Ballard B., Yi X., et al. Ligand-inducible, prostate stem cell antigen (PSCA)-directed GoCAR-T cells in advanced solid tumors: Preliminary results from a dose escalation. J. Clin. Oncol. 2019;37:283. doi: 10.1200/JCO.2019.37.4_suppl.283.
    1. Labanieh L., Majzner R.G., Mackall C.L. Programming CAR-T cells to kill cancer. Nat. Biomed. Eng. 2018;2:377–391. doi: 10.1038/s41551-018-0235-9.
    1. Roybal K.T., Rupp L.J., Morsut L., Walker W.J., McNally K.A., Park J.S., Lim W.A. Precision tumor recognition by T cells with combinatorial antigen-sensing circuits. Cell. 2016;164:770–779. doi: 10.1016/j.cell.2016.01.011.
    1. Raj D., Yang M.-H., Rodgers D., Hampton E.N., Begum J., Mustafa A., Lorizio D., Garces I., Propper D., Kench J.G., et al. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut. 2018;68:1052–1064. doi: 10.1136/gutjnl-2018-316595.
    1. Badrinath N., Yoo S.Y. Recent advances in cancer stem cell-targeted immunotherapy. Cancers. 2019;11:310. doi: 10.3390/cancers11030310.
    1. Ferrandina G., Petrillo M., Bonanno G., Scambia G. Targeting CD133 antigen in cancer. Expert Opin. Ther. Targets. 2009;13:823–837. doi: 10.1517/14728220903005616.
    1. Wang Y., Chen M., Wu Z., Tong C., Dai H., Guo Y., Liu Y., Huang J., Lv H., Luo C., et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. OncoImmunology. 2018;7:e1440169. doi: 10.1080/2162402X.2018.1440169.
    1. Kim S.W., Park H.W., Kim H., Lee S., Choi S.Y., Park Y., Lee S.-W. Evaluating antitumor activity of Kiatomab by targeting cancer stem cell-specific KIAA1114 antigen in mice. Immune Netw. 2019;19:e43. doi: 10.4110/in.2019.19.e43.
    1. Simonetta F., Alvarez M., Negrin R.S. Natural killer cells in graft-versus-host-disease after Allogeneic hematopoietic cell transplantation. Front. Immunol. 2017;8 doi: 10.3389/fimmu.2017.00465.
    1. . Natural killer cells for cancer immunotherapy: A new CAR is catching up. EBioMedicine. 2019;39:1–2. doi: 10.1016/j.ebiom.2019.01.018.
    1. Wang W., Wu C.-P., Wu C.-P. CAR-NK for tumor immunotherapy: Clinical transformation and future prospects. Cancer Lett. 2019;472:175–180. doi: 10.1016/j.canlet.2019.11.033.
    1. Habib S., Tariq S.M., Tariq M. Chimeric Antigen Receptor-Natural Killer Cells: The Future of Cancer Immunotherapy. Ochsner J. 2019;19:186–187. doi: 10.31486/toj.19.0033.
    1. CAR NK Cells Clinical Trials 2020. [(accessed on 7 July 2020)]; Available online:
    1. Ren J., Zhang X., Liu X., Fang C., Jiang S., June C.H., Zhao Y. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017;8:17002–17011. doi: 10.18632/oncotarget.15218.
    1. Ruella M., Kenderian S.S. Next-generation chimeric antigen receptor T-cell therapy: Going off the shelf. BioDrugs. 2017;31:473–481. doi: 10.1007/s40259-017-0247-0.
    1. Qasim W., Zhan H., Samarasinghe S., Adams S., Amrolia P., Stafford S., Butler K., Rivat C., Wright G., Somana K., et al. Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells. Sci. Transl. Med. 2017;9:eaaj2013. doi: 10.1126/scitranslmed.aaj2013.
    1. Cao J., Wang G., Cheng H., Wei C., Qi K., Sang W., Zhenyu L., Shi M., Li H., Qiao J., et al. Potent anti-leukemia activities of humanized CD19-targeted chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia. Am. J. Hematol. 2018;93:851–858. doi: 10.1002/ajh.25108.
    1. Kim G., Hwang H., Jo Y., Lee B., Lee Y.-H., Kim C.H., Hong C. Soluble γc receptor attenuates anti-tumor responses of CD8+ T cells in T cell immunotherapy. Int. J. Cancer. 2018;143:1212–1223. doi: 10.1002/ijc.31402.

Source: PubMed

3
S'abonner