A Comparison Between Two Assays for Measuring Seminal Oxidative Stress and their Relationship with Sperm DNA Fragmentation and Semen Parameters

Sheryl T Homa, Anna M Vassiliou, Jesse Stone, Aideen P Killeen, Andrew Dawkins, Jingyi Xie, Farley Gould, Jonathan W A Ramsay, Sheryl T Homa, Anna M Vassiliou, Jesse Stone, Aideen P Killeen, Andrew Dawkins, Jingyi Xie, Farley Gould, Jonathan W A Ramsay

Abstract

Oxidative stress (OS) is a significant cause of DNA fragmentation and is associated with poor embryo development and recurrent miscarriage. The aim of this study was to compare two different methods for assessing seminal OS and their ability to predict sperm DNA fragmentation and abnormal semen parameters. Semen samples were collected from 520 men attending for routine diagnostic testing following informed consent. Oxidative stress was assessed using either a chemiluminescence assay to measure reactive oxygen species (ROS) or an electrochemical assay to measure oxidation reduction potential (sORP). Sperm DNA fragmentation (DFI) and sperm with immature chromatin (HDS) were assessed using sperm chromatin structure assay (SCSA). Semen analysis was performed according to WHO 2010 guidelines. Reactive oxygen species sORP and DFI are negatively correlated with sperm motility (p = 0.0012, 0.0002, <0.0001 respectively) and vitality (p < 0.0001, 0.019, <0.0001 respectively). The correlation was stronger for sORP than ROS. Reactive oxygen species (p < 0.0001), sORP (p < 0.0001), DFI (p < 0.0089) and HDS (p < 0.0001) were significantly elevated in samples with abnormal semen parameters, compared to those with normal parameters. Samples with polymorphonuclear leukocytes (PMN) have excessive ROS levels compared to those without (p < 0.0001), but sORP and DFI in this group are not significantly increased. DNA fragmentation was significantly elevated in samples with OS measured by ROS (p = 0.0052) or sORP (p = 0.004). The results demonstrate the multi-dimensional nature of oxidative stress and that neither assay can be used alone in the diagnosis of OS, especially in cases of leukocytospermia.

Keywords: DNA fragmentation; DNA oxidation; chromatin; male infertility; oxidative stress; reactive oxygen species; spermatogenesis.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Box and whisker plots for seminal oxidative stress levels in different patient groups showing the median and interquartile ranges. Normal—normal semen parameters; Abnormal—abnormal parameters with a) chemiluminescence (ROS) or (b) oxidation reduction potential (sORP) Lower whisker = 10th percentile; upper whisker = 90th percentile. Dots indicate values outside the range. Data are shown on a logarithmic scale.
Figure 2
Figure 2
Box and whisker plots for sperm genetic integrity in different patient groups showing the median and interquartile ranges. Normal—normal semen parameters; Abnormal—abnormal parameters with a) DNA fragmentation (DFI) (b) immature chromatin (HDS). Lower whisker = 10th percentile; upper whisker = 90th percentile. Dots indicate values outside the range. Data are shown on a logarithmic scale.

References

    1. Darbandi M., Darbandi S., Agarwal A., Sengupta P., Durairajanayagam D., Henkel R., Sadeghi M. Reactive Oxygen Species and Male Reproductive Hormones. Reprod. Biol. Endocrinol. 2018;16:87. doi: 10.1186/s12958-018-0406-2.
    1. Wagner H., Cheng J., Ko E. Role of Reactive Oxygen Species in Male Infertility: An Updated Review of Literature. Arab J. Urol. 2017;16:35–43. doi: 10.1016/j.aju.2017.11.001.
    1. Wright C., Milne S., Leeson H. Sperm DNA Damage Caused by Oxidative Stress: Modifiable Clinical, Lifestyle and Nutritional Factors in Male Infertility. Reproduct. BioMed. Online. 2014;28:684–703. doi: 10.1016/j.rbmo.2014.02.004.
    1. Tremellen K. Oxidative Stress and Male Infertility—A Clinical Perspective. Hum. Reproduct. Update. 2008;14:243–258. doi: 10.1093/humupd/dmn004.
    1. Dada R., Bisht S. Oxidative Stress Major Executioner in Disease Pathology Role in Sperm DNA Damage and Preventive Strategies. Front. Biosci. 2017;9:420–447. doi: 10.2741/s495.
    1. Aitken R. Reactive Oxygen Species as Mediators of Sperm Capacitation and Pathological Damage. Mol. Reproduct. Dev. 2017;84:1039–1052. doi: 10.1002/mrd.22871.
    1. Du Plessis S., Agarwal A., Halabi J., Tvrda E. Contemporary Evidence on The Physiological Role of Reactive Oxygen Species In Human Sperm Function. J. Assist. Reproduct. Genet. 2015;32:509–520. doi: 10.1007/s10815-014-0425-7.
    1. Aitken R., Curry B. Redox Regulation of Human Sperm Function: From the Physiological Control of Sperm Capacitation to the Etiology of Infertility and DNA Damage in The Germ Line. Antioxid. Redox Signal. 2011;14:367–381. doi: 10.1089/ars.2010.3186.
    1. de Lamirande E., Jiang H., Zini A., Kodama H., Gagnon C. Reactive Oxygen Species and Sperm Physiology. Rev. Reproduct. 1997;2:48–54. doi: 10.1530/ror.0.0020048.
    1. O’Flaherty C., Matsushita-Fournier D. Reactive Oxygen Species and Protein Modifications in Spermatozoa. Biol. Reproduct. 2017;97:577–585. doi: 10.1093/biolre/iox104.
    1. Sakkas D., Alvarez J. Sperm DNA Fragmentation: Mechanisms of Origin, Impact on Reproductive Outcome, and Analysis. Fertil. Steril. 2010;93:1027–1036. doi: 10.1016/j.fertnstert.2009.10.046.
    1. Lobascio A., De Felici M., Anibaldi M., Greco P., Minasi M., Greco E. Involvement of Seminal Leukocytes, Reactive Oxygen Species, and Sperm Mitochondrial Membrane Potential in the DNA Damage of the Human Spermatozoa. Andrology. 2015;3:265–270. doi: 10.1111/andr.302.
    1. Aitken R., Baker M. Oxidative Stress, Spermatozoa and Leukocytic Infiltration: Relationships Forged by the Opposing Forces of Microbial Invasion and the Search for Perfection. J. Reproduct. Immunol. 2013;100:11–19. doi: 10.1016/j.jri.2013.06.005.
    1. Mupfiga C., Fisher D., Kruger T., Henkel R. The Relationship Between Seminal Leukocytes, Oxidative Status in the Ejaculate, and Apoptotic Markers in Human Spermatozoa. Syst. Biol. Reproduct. Med. 2013;59:304–311. doi: 10.3109/19396368.2013.821540.
    1. Henkel R. Leukocytes and Oxidative Stress: Dilemma for Sperm Function and Male Fertility. Asian J. Androl. 2011;13:43–52. doi: 10.1038/aja.2010.76.
    1. Koppers A., De Iuliis G., Finnie J., McLaughlin E., Aitken R. Significance of Mitochondrial Reactive Oxygen Species in the Generation of Oxidative Stress in Spermatozoa. J. Clin. Endocrinol. Metab. 2008;93:3199–3207. doi: 10.1210/jc.2007-2616.
    1. Ford W. Regulation of Sperm Function by Reactive Oxygen Species. Hum. Reproduct. Update. 2004;10:387–399. doi: 10.1093/humupd/dmh034.
    1. Gomez E., Buckingham D., Brindle J., Lanzafame F., Irvine D., Aitken R. Development of an Image Analysis System to Monitor the Retention of Residual Cytoplasm by Human Spermatozoa: Correlation With Biochemical Markers of the Cytoplasmic Space, Oxidative Stress, and Sperm Function. J. Androl. 1996;17:276–287.
    1. Aitken R., Gibb Z., Baker M., Drevet J., Gharagozloo P. Causes and Consequences of Oxidative Stress in Spermatozoa. Reproduct. Fertil. Dev. 2016;28:1–10. doi: 10.1071/RD15325.
    1. Moazamian R., Polhemus A., Connaughton H., Fraser B., Whiting S., Gharagozloo P., Aitken R. Oxidative Stress and Human Spermatozoa: Diagnostic and Functional Significance of Aldehydes Generated as a Result of Lipid Peroxidation. MHR Basic Sci. Reproduct. Med. 2015;21:502–515. doi: 10.1093/molehr/gav014.
    1. Muratori M., Tamburrino L., Marchiani S., Cambi M., Olivito B., Azzari C., Forti G., Baldi E. Investigation on the Origin of Sperm DNA Fragmentation: Role of Apoptosis, Immaturity and Oxidative Stress. Mol. Med. 2015;21:109–122. doi: 10.2119/molmed.2014.00158.
    1. Aitken R., Koppers A. Apoptosis and DNA Damage in Human Spermatozoa. Asian J. Androl. 2010;13:36–42. doi: 10.1038/aja.2010.68.
    1. Darbandi M., Darbandi S., Agarwal A., Baskaran S., Dutta S., Sengupta P., Khorram Khorshid H., Esteves S., Gilany K., Hedayati M., et al. Reactive Oxygen Species-Induced Alterations in H19-Igf2 Methylation Patterns, Seminal Plasma Metabolites, and Semen Quality. J. Assist. Reproduct. Genet. 2018 doi: 10.1007/s10815-018-1350-y.
    1. Menezo Y., Silvestris E., Dale B., Elder K. Oxidative Stress and Alterations in DNA Methylation: Two Sides of the Same Coin in Reproduction. Reproduct. BioMed. Online. 2016;33:668–683. doi: 10.1016/j.rbmo.2016.09.006.
    1. Tunc O., Tremellen K. Oxidative DNA Damage Impairs Global Sperm DNA Methylation in Infertile Men. J. Assist. Reproduct. Genet. 2009;26:537–544. doi: 10.1007/s10815-009-9346-2.
    1. Santi D., Spaggiari G., Simoni M. Sperm DNA Fragmentation Index as a Promising Predictive Tool for Male Infertility Diagnosis and Treatment Management—Meta-Analyses. Reproduct. BioMed. Online. 2018;37:315–326. doi: 10.1016/j.rbmo.2018.06.023.
    1. Khosravi F., Valojerdi M., Amanlou M., Karimian L., Abolhassani F. Relationship of Seminal Reactive Nitrogen and Oxygen Species and Total Antioxidant Capacity with Sperm DNA Fragmentation in Infertile Couples with Normal and Abnormal Sperm Parameters. Andrologia. 2014;46:17–23. doi: 10.1111/and.12034.
    1. Agarwal A., Sharma R., Sharma R., Assidi M., Abuzenadah A., Alshahrani S., Durairajanayagam D., Sabanegh E. Characterizing Semen Parameters and Their Association with Reactive Oxygen Species in Infertile Men. Reproduct. Biol. Endocrinol. 2014;12:33–42. doi: 10.1186/1477-7827-12-33.
    1. Zini A., Lamirande E., Gagnon C. Reactive Oxygen Species in Semen of Infertile Patients: Levels of Superoxide Dismutase- And Catalase-Like Activities in Seminal Plasma and Spermatozoa. Int. J. Androl. 1993;16:183–188. doi: 10.1111/j.1365-2605.1993.tb01177.x.
    1. Kamkar N., Ramezanali F., Sabbaghian M. The Relationship Between Sperm DNA Fragmentation, Free Radicals and Antioxidant Capacity with Idiopathic Repeated Pregnancy Loss. Reproduct. Biol. 2018;18:330–335. doi: 10.1016/j.repbio.2018.11.002.
    1. Leach M., Aitken R., Sacks G. Sperm DNA Fragmentation Abnormalities in Men from Couples with a History of Recurrent Miscarriage. Aust. N. Z. J. Obstet. Gynaecol. 2015;55:379–383. doi: 10.1111/ajo.12373.
    1. Evenson D. Sperm Chromatin Structure Assay (SCSA®) In: Carrell D., Aston K., editors. Spermatogenesis. Methods in Molecular Biology (Methods and Protocols) Humana Press; Totowa, NJ, USA: 2013. pp. 147–164.
    1. Homa S., Vessey W., Perez-Miranda A., Riyait T., Agarwal A. Reactive Oxygen Species (ROS) In Human Semen: Determination of a Reference Range. J. Assist. Reproduct. Genet. 2015;32:757–764. doi: 10.1007/s10815-015-0454-x.
    1. Vessey W., Perez-Miranda A., Macfarquhar R., Agarwal A., Homa S. Reactive Oxygen Species in Human Semen: Validation and Qualification of a Chemiluminescence Assay. Fertil. Steril. 2014;102:1576–1583. doi: 10.1016/j.fertnstert.2014.09.009.
    1. Saleh R., Agarwal A. Oxidative Stress and Male Infertility: From Research Bench to Clinical Practice. J. Androl. 2002;23:737–752.
    1. Agarwal A., Bui A. Oxidation-Reduction Potential as a New Marker for Oxidative Stress: Correlation to Male Infertility. Investig. Clin. Urol. 2017;58:385–399. doi: 10.4111/icu.2017.58.6.385.
    1. Bar-Or D., Bar-Or R., Rael L., Brody E. Oxidative Stress in Severe Acute Illness. Redox Biol. 2015;4:340–345. doi: 10.1016/j.redox.2015.01.006.
    1. Takeshima T., Yumura Y., Yasuda K., Sanjo H., Kuroda S., Yamanaka H., Iwasaki A. Inverse Correlation Between Reactive Oxygen Species in Unwashed Semen and Sperm Motion Parameters as Measured by a Computer-Assisted Semen Analyzer. Asian J. Androl. 2017;19:350–354. doi: 10.4103/1008-682X.173933.
    1. Pasqualotto F., Sharma R., Nelson D., Thomas A., Agarwal A. Relationship Between Oxidative Stress, Semen Characteristics, and Clinical Diagnosis in Men Undergoing Infertility Investigation. Fertil. Steril. 2000;73:459–464. doi: 10.1016/S0015-0282(99)00567-1.
    1. Barroso G., Morshedi M., Oehninger S. Analysis of DNA Fragmentation, Plasma Membrane Translocation of Phosphatidylserine and Oxidative Stress in Human Spermatozoa. Hum. Reproduct. 2000;15:1338–1344. doi: 10.1093/humrep/15.6.1338.
    1. Aitken R., Buckingham D., Brindle J., Gomez E., Baker H., Irvine D. Andrology: Analysis of Sperm Movement in Relation to the Oxidative Stress Created by Leukocytes in Washed Sperm Preparations and Seminal Plasma. Hum. Reproduct. 1995;10:2061–2071. doi: 10.1093/oxfordjournals.humrep.a136237.
    1. Khodair H., Omran T. Evaluation of Reactive Oxygen Species (ROS) and DNA Integrity Assessment in Cases of Idiopathic Male Infertility. Egypt. J. Dermatol. Venerol. 2013;33:51–55. doi: 10.4103/1110-6530.123932.
    1. Saleh R., Agarwal A., Nada E., El-Tonsy M., Sharma R., Meyer A., Nelson D., Thomas A. Negative Effects of Increased Sperm DNA Damage in Relation to Seminal Oxidative Stress in Men with Idiopathic and Male Factor Infertility. Fertil. Steril. 2003;79:1597–1605. doi: 10.1016/S0015-0282(03)00337-6.
    1. Lopes S., Jurisicova A., Sun J., Casper R. Reactive Oxygen Species: Potential Cause for DNA Fragmentation in Human Spermatozoa. Hum. Reproduct. 1998;13:896–900. doi: 10.1093/humrep/13.4.896.
    1. Majzoub A., Arafa M., Mahdi M., Agarwal A., Al Said S., Al-Emadi I., El Ansari W., Alattar A., Al Rumaihi K., Elbardisi H. Oxidation–Reduction Potential and Sperm DNA Fragmentation, and Their Associations with Sperm Morphological Anomalies Amongst Fertile and Infertile Men. Arab J. Urol. 2018;16:87–95. doi: 10.1016/j.aju.2017.11.014.
    1. Arafa M., Agarwal A., Al Said S., Majzoub A., Sharma R., Bjugstad K., AlRumaihi K., Elbardisi H. Semen Quality and Infertility Status Can Be Identified Through Measures of Oxidation-Reduction Potential. Andrologia. 2017;50:e12881. doi: 10.1111/and.12881.
    1. World Health Organization . WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. WHO Press; Geneva, Switzerland: 2010.
    1. Rael L., Bar-Or R., Kelly M., Carrick M., Bar-Or D. Assessment of Oxidative Stress in Patients with an Isolated Traumatic Brain Injury Using Disposable Electrochemical Test Strips. Electroanalysis. 2015;27:2567–2573. doi: 10.1002/elan.201500178.
    1. Stahl P., Cogan C., Mehta A., Bolyakov A., Paduch D., Goldstein M. Concordance Among Sperm Deoxyribonucleic Acid Integrity Assays and Semen Parameters. Fertil. Steril. 2015;104:56–61. doi: 10.1016/j.fertnstert.2015.04.023.
    1. Agarwal A., Qiu E., Sharma R. Laboratory Assessment of Oxidative Stress in Semen. Arab J. Urol. 2018;16:77–86. doi: 10.1016/j.aju.2017.11.008.
    1. Wardman P. Fluorescent and Luminescent Probes for Measurement of Oxidative and Nitrosative Species in Cells and Tissues: Progress, Pitfalls, and Prospects. Free Radic. Biol. Med. 2007;43:995–1022. doi: 10.1016/j.freeradbiomed.2007.06.026.
    1. Aitken R., Baker M., O’Bryan M. Andrology Lab Corner*: Shedding Light on Chemiluminescence: The Application of Chemiluminescence in Diagnostic Andrology. J. Androl. 2004;25:455–465. doi: 10.1002/j.1939-4640.2004.tb02815.x.
    1. Spanidis Y., Mpesios A., Stagos D., Goutzourelas N., Bar-Or D., Karapetsa M., Zakynthinos E., Spandidos D., Tsatsakis A., Leon G., et al. Assessment of the Redox Status in Patients with Metabolic Syndrome and Type 2 Diabetes Reveals Great Variations. Exp. Ther. Med. 2016;11:895–903. doi: 10.3892/etm.2016.2968.
    1. Aitken R., De Iuliis G., Finnie J., Hedges A., McLachlan R. Analysis of the Relationships Between Oxidative Stress, DNA Damage and Sperm Vitality in a Patient Population: Development of Diagnostic Criteria. Hum. Reproduct. 2010;25:2415–2426. doi: 10.1093/humrep/deq214.
    1. Smit M., Romijn J., Wildhagen M., Weber R., Dohle G. Sperm Chromatin Structure is Associated with the Quality of Spermatogenesis in Infertile Patients. Fertil. Steril. 2010;94:1748–1752. doi: 10.1016/j.fertnstert.2009.10.030.
    1. Moskovtsev S., Willis J., White J., Mullen J. Sperm DNA Damage: Correlation to Severity of Semen Abnormalities. Urology. 2009;74:789–793. doi: 10.1016/j.urology.2009.05.043.
    1. Agarwal A., Wang S. Clinical Relevance of Oxidation-Reduction Potential in the Evaluation of Male Infertility. Urology. 2017;104:84–89. doi: 10.1016/j.urology.2017.02.016.
    1. Henkel R., Kierspel E., Stalf T., Mehnert C., Menkveld R., Tinneberg H., Schill W., Kruger T. Effect of Reactive Oxygen Species Produced by Spermatozoa and Leukocytes on Sperm Functions in Non-Leukocytospermic Patients. Fertil. Steril. 2005;83:635–642. doi: 10.1016/j.fertnstert.2004.11.022.
    1. Micillo A., Vassallo M., Cordeschi G., D’Andrea S., Necozione S., Francavilla F., Francavilla S., Barbonetti A. Semen Leukocytes and Oxidative-Dependent DNA Damage of Spermatozoa in Male Partners of Subfertile Couples With No Symptoms of Genital Tract Infection. Andrology. 2016;4:808–815. doi: 10.1111/andr.12188.
    1. Alvarez J.G., Sharma R.K., Ollero M., Saleh R.A., Lopez M.C., Thomas A.J., Jr., Evenson D.P., Agarwal A. Increased DNA Damage in Sperm from Leukocytospermic Semen Samples as Determined by the Sperm Chromatin Structure Assay. Fertil. Steril. 2002;7:319–329. doi: 10.1016/S0015-0282(02)03201-6.
    1. Simbini T., Umapathy E., Jacobus E., Tendaupenyu G., Mbizvo M. Study on the Origin of Seminal Leucocytes Using Split Ejaculate Technique and the Effect of Leucocytospermia on Sperm Characteristics. Urol. Int. 1998;61:95–100. doi: 10.1159/000030296.
    1. Halliwell B., Gutteridge J. The Antioxidants of Human Extracellular Fluids. Arch. Biochem. Biophys. 1990;280:1–8. doi: 10.1016/0003-9861(90)90510-6.
    1. Ma Y., Xie N., Li Y., Zhang B., Xie D., Zhang W., Li Q., Yu H., Zhang Q., Ni Y., et al. Teratozoospermia with Amorphous Sperm Head Associate with Abnormal Chromatin Condensation in a Chinese Family. Syst. Biol. Reproduct. Med. 2018;19:1–10. doi: 10.1080/19396368.2018.1543481.
    1. Zini A., Phillips S., Courchesne A., Boman J., Baazeem A., Bissonnette F., Kadoch I., San Gabriel M. Sperm Head Morphology is Related to High Deoxyribonucleic Acid Stainability Assessed by Sperm Chromatin Structure Assay. Fertil. Steril. 2009;91:2495–2500. doi: 10.1016/j.fertnstert.2008.03.032.
    1. Aitken R.J., De Iuliis G.N. On the Possible Origins of DNA Damage in Human Spermatozoa. Mol. Hum. Reproduct. 2010;16:3–13. doi: 10.1093/molehr/gap059.
    1. De Iuliis G.N., Thomson L.K., Mitchell L.A., Finnie J.M., Koppers A.J., Hedges A., Nixon B., Aitken R.J. DNA Damage in Human Spermatozoa is Highly Correlated with the Efficiency of Chromatin Remodeling and the Formation of 8-hydroxy-20-deoxyguanosine, a Marker of Oxidative Stress. Biol. Reproduct. 2009;81:517–524. doi: 10.1095/biolreprod.109.076836.

Source: PubMed

3
S'abonner