The COVID-19 Vaccine Race: Challenges and Opportunities in Vaccine Formulation

Jieliang Wang, Ying Peng, Haiyue Xu, Zhengrong Cui, Robert O Williams 3rd, Jieliang Wang, Ying Peng, Haiyue Xu, Zhengrong Cui, Robert O Williams 3rd

Abstract

In the race for a safe and effective vaccine against coronavirus disease (COVID)-19, pharmaceutical formulation science plays a critical role throughout the development, manufacturing, distribution, and vaccination phases. The proper choice of the type of vaccine, carrier or vector, adjuvant, excipients, dosage form, and route of administration can directly impact not only the immune responses induced and the resultant efficacy against COVID-19, but also the logistics of manufacturing, storing and distributing the vaccine, and mass vaccination. In this review, we described the COVID-19 vaccines that are currently tested in clinical trials and provided in-depth insight into the various types of vaccines, their compositions, advantages, and potential limitations. We also addressed how challenges in vaccine distribution and administration may be alleviated by applying vaccine-stabilization strategies and the use of specific mucosal immune response-inducing, non-invasive routes of administration, which must be considered early in the development process.

Keywords: adjuvant; coronavirus; mucosal vaccination; route of administration; vaccine.

Figures

Fig. 1
Fig. 1
Overlay comparisons between SARS-CoV-2 RBD (yellow, PDB ID: 6VW1) and SARS-CoV RBD (blue, PDB ID: 3D0H) bind to ACE2 (red, PDB ID: 6VW1). Residues close to the interface are highlighted in green for SARS-CoV-2 RBD and cyan for SARS-CoV RBD. Image of 6VW1 (Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., Li, F., 2020. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224.) and 3D0H (Li, F., 2008. Structural Analysis of Major Species Barriers between Humans and Palm Civets for Severe Acute Respiratory Syndrome Coronavirus Infections. J. Virol. 82, 6984–6991.) are visualized using the PyMOL Molecular Graphics System
Fig. 2
Fig. 2
A comparison of routes of administration between the ideal vaccines and the current COVID-19 vaccine candidates
Fig. 3
Fig. 3
A comparison between slow and fast freezing process

References

    1. Wu F, Zhao S, Yu B, Chen Y, Wang W, Song Z, et al. A new coronavirus associated with human respiratory disease in China. Nature [Internet]. 2020;579(7798):265–9 Available from: .
    1. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature [Internet]. 2020;581(7807):215–220. doi: 10.1038/s41586-020-2180-5.
    1. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med [Internet] 2020;22:NEJMoa2007764. doi: 10.1056/NEJMoa2007764.
    1. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet [Internet]. 2020; Available from: .
    1. Hung IF-N, Lung K-C, Tso EY-K, Liu R, Chung TW-H, Chu M-Y, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet [Internet]. 2020;395(10238):1695–704 Available from: .
    1. Murphy K, Casey W. Janeway’s immunobiology. 9. New York: Garland Science; 2017. pp. 729–741.
    1. Zepp F. Principles of vaccine design—lessons from nature. Vaccine [Internet]. 2010;28:C14–24 Available from: .
    1. Hanley KA. The double-edged sword: how evolution can make or break a live-attenuated virus vaccine. Evol Educ Outreach [Internet] 2011;4(4):635–643. doi: 10.1007/s12052-011-0365-y.
    1. Offit PA. The cutter incident, 50 years later. N Engl J Med [Internet]. 2005;352(14):1411–1412. doi: 10.1056/NEJMp048180.
    1. Vartak A, Sucheck S. Recent advances in subunit vaccine carriers. Vaccines [Internet]. 2016;4(2):12 Available from: .
    1. Li F, Li W, Farzan M, Harrison SC. Structural biology: structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864–8. doi: 10.1126/science.1116480.
    1. McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol [Internet]. 2007;81(2):813–21 Available from: .
    1. Gretebeck LM, Subbarao K. Animal models for SARS and MERS coronaviruses. Curr Opin Virol [Internet]. 2015;13:123–9 Available from: .
    1. Marzi A, Gramberg T, Simmons G, Möller P, Rennekamp AJ, Krumbiegel M, et al. DC-SIGN and DC-SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol [Internet]. 2004;78(21):12090–5 Available from: .
    1. Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, et al. Immunization with modified Vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol [Internet]. 2004;78(22):12672–6 Available from: .
    1. Holmes EC, Zhang Y-Z. Novel 2019 coronavirus genome [Internet]. . 2020 [cited 2020 May 26]. Available from:
    1. Garden R. Remarks by President Trump on vaccine development [Internet]. 2020 [cited 2020 May 25]. Available from:
    1. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. bioRxiv. 2020.
    1. Lapelosa M, Gallicchio E, Arnold GF, Arnold E, Levy RM. In silico vaccine design based on molecular simulations of rhinovirus chimeras presenting HIV-1 gp41 epitopes. J Mol Biol [Internet]. 2009;385(2):675–91 Available from: .
    1. Shamriz S, Ofoghi H. Design, structure prediction and molecular dynamics simulation of a fusion construct containing malaria pre-erythrocytic vaccine candidate, PfCelTOS, and human interleukin 2 as adjuvant. BMC Bioinformatics [Internet]. 2016;17(1):–71 Available from: .
    1. Chaudhury S, Duncan EH, Atre T, Storme CK, Beck K, Kaba SA, et al. Identification of immune signatures of novel adjuvant formulations using machine learning. Sci Rep [Internet]. 2018;8(1):17508 Available from: .
    1. Chaudhury S, Duncan EH, Atre T, Dutta S, Spring MD, Leitner WW, Bergmann-Leitner ES. Combining immunoprofiling with machine learning to assess the effects of adjuvant formulation on human vaccine-induced immunity. Hum Vaccin Immunother [Internet] 2020;16(2):400–411. doi: 10.1080/21645515.2019.1654807.
    1. Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. bioRxiv [Internet]. 2020 ;2020.03.20.000141. Available from:
    1. He Y, Zhou Y, Liu S, Kou Z, Li W, Farzan M, et al. Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun [Internet]. 2004;324(2):773–81 Available from: .
    1. Du L, Zhao G, He Y, Guo Y, Zheng B-J, Jiang S, et al. Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model. Vaccine [Internet]. 2007;25(15):2832–8 Available from: .
    1. Fang M, Cheng H, Dai Z, Bu Z, Sigal LJ. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host. Virology [Internet]. 2006;345(1):231–43 Available from: .
    1. Galmiche MC, Goenaga J, Wittek R, Rindisbacher L. Neutralizing and protective antibodies directed against Vaccinia virus envelope antigens. Virology [Internet]. 1999;254(1):71–80 Available from: .
    1. Novavax. Novavax to present COVID-19 vaccine candidate progress in World Vaccine Congress Webinar Series [Internet]. 2020 [cited 2020 May 25]. Available from:
    1. Du L, Zhao G, Lin Y, Sui H, Chan C, Ma S, et al. Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS. J Immunol [Internet] 2008;180(2):948–956. doi: 10.4049/jimmunol.180.2.948.
    1. Detmer A, Glenting J. Live bacterial vaccines—a review and identification of potential hazards. Microb Cell Fact. 2006;5(iii):1–12.
    1. Montel Mendoza G, Pasteris SE, Otero MC, Fatima Nader-Macías ME. Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage. J Appl Microbiol. 2014;116(1):157–166. doi: 10.1111/jam.12359.
    1. INOVIO Expands manufacturing of COVID-19 DNA vaccine INO-4800 With New Funding from CEPI [Internet]. [cited 2020 May 18]. Available from:
    1. Thi EP, Mire CE, Lee ACH, Geisbert JB, Zhou JZ, Agans KN, et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature [Internet]. 2015;521(7552):362–5 Available from: .
    1. Schlake T, Thess A, Fotin-Mleczek M, Kallen KJ. Developing mRNA-vaccine technologies. RNA Biol. 2012;9(11):1319–1330. doi: 10.4161/rna.22269.
    1. Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol Ther [Internet] 2019;27(4):710–728. doi: 10.1016/j.ymthe.2019.02.012.
    1. Safety and immunogenicity study of 2019-nCoV vaccine (mRNA-1273) for prophylaxis of SARS-CoV-2 Infection (COVID-19) [Internet]. 2020 [cited 2020 May 20]. Available from:
    1. Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained immunity-based vaccines: a new paradigm for the development of broad-Spectrum anti-infectious formulations. Front Immunol. 2018;9(December):2936. doi: 10.3389/fimmu.2018.02936.
    1. Quintin J, Saeed S, Martens JHA, Giamarellos-Bourboulis EJ, Ifrim DC, Logie C, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe [Internet]. 2012;12(2):223–32 Available from: .
    1. Texas A&M University. BCG vaccine for health care workers as defense against COVID 19 (BADAS) [Internet]. 2020 [cited 2020 May 20]. Available from:
    1. Angelidou A, Conti MG, Diray-Arce J, Benn CS, Shann F, Netea MG, et al. Licensed Bacille Calmette-Guérin (BCG) formulations differ markedly in bacterial viability, RNA content and innate immune activation. Vaccine [Internet] 2020;38(9):2229–2240. doi: 10.1016/j.vaccine.2019.11.060.
    1. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science (80-) [Internet] 2020;6:eabc1932. doi: 10.1126/science.abc1932.
    1. Editor CBF, Walker JM. Vaccine adjuvants [Internet] In: Fox CB, editor. Methods in Molecular Biology. New York: Springer New York; 2017.
    1. Kool M, Soullié T, van Nimwegen M, Willart MAM, Muskens F, Jung S, et al. Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med [Internet] 2008;205(4):869–882. doi: 10.1084/jem.20071087.
    1. Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol [Internet]. 2008;181(6):3755–3759. doi: 10.4049/jimmunol.181.6.3755.
    1. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 2008;453(7198):1122–1126. doi: 10.1038/nature06939.
    1. Mannhalter JW, Neychev HO, Zlabinger GJ, Ahmad R, Eibl MM. Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol. 1985.
    1. Ulanova M, Tarkowski A, Hahn-Zoric M, Hanson LÅ. The common vaccine adjuvant aluminum hydroxide up-regulates accessory properties of human monocytes via an interleukin-4-dependent mechanism. Infect Immun. 2001;69(2):1151–1159. doi: 10.1128/IAI.69.2.1151-1159.2001.
    1. Khurana S, Coyle EM, Manischewitz J, King LR, Gao J, Germain RN, et al. AS03-adjuvanted H5N1 vaccine promotes antibody diversity and affinity maturation, NAI titers, cross-clade H5N1 neutralization, but not H1N1 cross-subtype neutralization. NPJ vaccines [Internet]. 2018;3(March):40. Available from: .
    1. Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H, Kielland A, Vosters O, Vanderheyde N, Schiavetti F, Larocque D, van Mechelen M, Garçon N. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol [Internet]. 2009;183(10):6186–6197. doi: 10.4049/jimmunol.0901474.
    1. Schell B, Braedel S, Probst J, Carralot JP, Wagner H, Schild H, et al. Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol. 2004;34(2):537–547. doi: 10.1002/eji.200324198.
    1. Edwards DK, Jasny E, Yoon H, Horscroft N, Schanen B, Geter T, Fotin-Mleczek M, Petsch B, Wittman V. Adjuvant effects of a sequence-engineered mRNA vaccine: translational profiling demonstrates similar human and murine innate response. J Transl Med. 2017;15(1):1–18. doi: 10.1186/s12967-016-1111-6.
    1. Dudek T, Knipe DM. Replication-defective viruses as vaccines and vaccine vectors. Virology [Internet]. 2006;344(1):230–9 Available from: .
    1. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998.
    1. Faust N. Addressing the challenges of commercial-scale viral vector production. Cell Gene Ther Insights. 2018;4(2):31–36. doi: 10.18609/cgti.2018.004.
    1. Clément N, Grieger JC. Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev. 2016;3:16002. doi: 10.1038/mtm.2016.2.
    1. Vellinga J, Smith JP, Lipiec A, Majhen D, Lemckert A, van Ooij M, Ives P, Yallop C, Custers J, Havenga M. Challenges in manufacturing adenoviral vectors for global vaccine product deployment. Hum Gene Ther. 2014;25(4):318–327. doi: 10.1089/hum.2014.007.
    1. Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther. 2020;20(5):451–465. doi: 10.1080/14712598.2020.1693541.
    1. Terova O, Soltys S, Hermans P, De Rooij J, Detmers F. Overcoming downstream purification challenges for viral vector manufacturing: enabling advancement of gene therapies in the clinic. Cell Gene Ther Insights. 2018;4(2):101–111. doi: 10.18609/cgti.2018.017.
    1. Hernandez Bort JA. Challenges in the downstream process of gene therapy products. Am Pharm Rev. 2019;22(4).
    1. Merten O-W, Schweizer M, Chahal P, Kamen A. Manufacturing of viral vectors: part II. Downstream processing and safety aspects. Pharm Bioprocess. 2014.
    1. Bandeira V, Peixoto C, Rodrigues AF, Cruz PE, Alves PM, Coroadinha AS, Carrondo MJT. Downstream processing of lentiviral vectors: releasing bottlenecks. Hum Gene Ther Methods. 2012;23:255–263. doi: 10.1089/hgtb.2012.059.
    1. Gramer MJ. Product quality considerations for mammalian cell culture process development and manufacturing. Adv Biochem Eng Biotechnol. 2014.
    1. Temperature sensitivity of vaccines [Internet]. World Health Organization; 2006. Available from:
    1. ZOLGENSMA . Package insert. Bannockburn: AveXis, Inc.; 2019.
    1. Murhekar MV, Dutta S, Kapoor AN, Bitragunta S, Dodum R, Ghosh P, et al. Frequent exposure to suboptimal temperatures in vaccine cold-chain system in India: results of temperature monitoring in 10 states. Bull World Health Organ [Internet]. 2013;91(12):906–13 Available from: .
    1. Hanson CM, George AM, Sawadogo A, Schreiber B. Is freezing in the vaccine cold chain an ongoing issue? A literature review. Vaccine [Internet]. 2017;35(17):2127–33 Available from: .
    1. Matthias DM, Robertson J, Garrison MM, Newland S, Nelson C. Freezing temperatures in the vaccine cold chain: a systematic literature review. Vaccine [Internet]. 2007;25(20):3980–6 Available from: .
    1. Niu L, Panyam J. Freeze concentration-induced PLGA and polystyrene nanoparticle aggregation: Imaging and rational design of lyoprotection. J Control Release [Internet]. 2017;248:125–132. Available from: 10.1016/j.jconrel.2017.01.019
    1. Pastorino B, Baronti C, Gould EA, Charrel RN, de Lamballerie X. Effect of Chemical Stabilizers on the Thermostability and Infectivity of a Representative Panel of Freeze Dried Viruses. Digard P, editor. PLoS One [Internet] 2015;10(4):e0118963. doi: 10.1371/journal.pone.0118963.
    1. Zhang Y, Zhang J. Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J Colloid Interface Sci [Internet]. 2005;283(2):352–7 Available from: .
    1. Acar HY c, Garaas RS, Syud F, Bonitatebus P, Kulkarni AM. Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. J Magn Magn Mater [Internet]. 2005;293(1):1–7. Available from: .
    1. Offit PA, Jew RK. Addressing parents’ concerns: do vaccines contain harmful preservatives, adjuvants, additives, or residuals? Pediatrics [Internet] 2003;112(6):1394–1397. doi: 10.1542/peds.112.6.1394.
    1. Tischer A, Lilie H, Rudolph R, Lange C. L-arginine hydrochloride increases the solubility of folded and unfolded recombinant plasminogen activator rPA. Protein Sci [Internet] 2010;19(9):1783–1795. doi: 10.1002/pro.465.
    1. Baynes BM, Wang DIC, Trout BL. Role of arginine in the stabilization of proteins against aggregation. Biochem Int. 2005;44(12):4919–4925. doi: 10.1021/bi047528r.
    1. Das U, Hariprasad G, Ethayathulla AS, Manral P, Das TK, Pasha S, et al. Inhibition of protein aggregation: supramolecular assemblies of arginine hold the key. Rutherford S, editor. PLoS One [Internet] 2007;2(11):e1176. doi: 10.1371/journal.pone.0001176.
    1. Morefield GL. A rational, systematic approach for the development of vaccine formulations. AAPS J. 2011;13(2):191–200. doi: 10.1208/s12248-011-9261-1.
    1. Engstrom JD, Lai ES, Ludher BS, Chen B, Milner TE, Williams RO, et al. Formation of stable submicron protein particles by thin film freezing. Pharm Res. 2008;25(6):1334–1346. doi: 10.1007/s11095-008-9540-4.
    1. Li X, Thakkar SG, Ruwona TB, Williams RO, Cui Z. A method of lyophilizing vaccines containing aluminum salts into a dry powder without causing particle aggregation or decreasing the immunogenicity following reconstitution. J Control Release [Internet]. 2015;204:38–50. doi: 10.1016/j.jconrel.2015.02.035.
    1. Aso Y, Yoshioka S. Effect of freezing rate on physical stability of lyophilized cationic liposomes. Chem Pharm Bull (Tokyo) [Internet]. 2005;53(3):301–4 Available from: .
    1. Thakkar SG, Ruwona TB, Williams RO, Cui Z. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures. Hum Vaccines Immunother [Internet] 2017;13(4):936–946. doi: 10.1080/21645515.2016.1259042.
    1. Xu H, Ruwona TB, Thakkar SG, Chen Y, Zeng M, Cui Z. Nasal aluminum (oxy)hydroxide enables adsorbed antigens to induce specific systemic and mucosal immune responses. Hum Vaccines Immunother. 2017;13(11):2688–2694. doi: 10.1080/21645515.2017.1365995.
    1. Thakkar SG, Warnken ZN, Alzhrani RF, Valdes SA, Aldayel AM, Xu H, et al. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release [Internet] 2018;292:111–118. doi: 10.1016/j.jconrel.2018.10.020.
    1. BCG vaccine [Package insert] [Internet]. Roseland, NJ: Merck & Co; 2019. Available from:
    1. Smyth H, Zhang H, Cui Z, Wang J, Xu H, Zhang Y, et al. Biologically active dry powder compositions and method of their manufacture and use,. U.S. Patent Application No. 63/012,792, 2020.
    1. Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol. 2009;183(11):6883–6892. doi: 10.4049/jimmunol.0901466.
    1. Mohanan D, Slütter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kündig TM, Gander B, Johansen P. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release [Internet] 2010;147(3):342–349. doi: 10.1016/j.jconrel.2010.08.012.
    1. Tomar J, Tonnis WF, Patil HP, de boer AH, Hagedoorn P, Vanbever R, et al. Pulmonary immunization: deposition site is of minor relevance for influenza vaccination but deep lung deposition is crucial for hepatitis B vaccination. Acta Pharm Sin B [Internet] 2019;9(6):1231–1240. doi: 10.1016/j.apsb.2019.05.003.
    1. Kulkarni PS, Raut SK, Dhere RM. A post-marketing surveillance study of a human live-virus pandemic influenza A (H1N1) vaccine (Nasovac ® ) in India. Hum Vaccin Immunother [Internet]. 2013;9(1):122–124. doi: 10.4161/hv.22317.
    1. Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, Spyr C, Steffen R. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med [Internet] 2004;350(9):896–903. doi: 10.1056/NEJMoa030595.
    1. Miller E, Andrews N, Stellitano L, Stowe J, Winstone AM, Shneerson J, et al. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ [Internet]. 2013;346:f794. doi: 10.1136/bmj.f794.
    1. Connell TD. Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines [Internet] 2007;6(5):821–834. doi: 10.1586/14760584.6.5.821.
    1. Linehan JL, Dileepan T, Kashem SW, Kaplan DH, Cleary P, Jenkins MK. Generation of Th17 cells in response to intranasal infection requires TGF-β1 from dendritic cells and IL-6 from CD301b + dendritic cells. Proc Natl Acad Sci [Internet] 2015;112(41):12782–12787. doi: 10.1073/pnas.1513532112.
    1. Astudillo A, Leung SSY, Kutter E, Morales S, Chan H-K. Nebulization effects on structural stability of bacteriophage PEV 44. Eur J Pharm Biopharm [Internet]. 2018;125(December 2017):124–30 Available from: .

Source: PubMed

3
S'abonner