Recent Advances in Subunit Vaccine Carriers

Abhishek Vartak, Steven J Sucheck, Abhishek Vartak, Steven J Sucheck

Abstract

The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles.

Keywords: liposomes; nanoparticles; polymeric nanoparticles; vaccines.

Figures

Figure 1
Figure 1
Variations with liposomal vaccine delivery system.
Figure 2
Figure 2
Polymers used in vaccine delivery.

References

    1. Ragupathi G., Damani P., Srivastava G., Srivastava O., Sucheck S.J., Ichikawa Y., Livingston P.O. Synthesis of sialyl Lewisa (sLea, CA19-9) and construction of an immunogenic sLea vaccine. Cancer Immunol. Immunother. 2009;58:1397–1405. doi: 10.1007/s00262-008-0654-7.
    1. Zhu J., Warren J.D., Danishefsky S.J. Synthetic carbohydrate-based anticancer vaccines: The memorial sloan-kettering experience. Expert Rev. Vaccines. 2009;8:1399–1413. doi: 10.1586/erv.09.95.
    1. da Costa C., Walker B., Bonavia A. Tuberculosis vaccines—State of the art, and novel approaches to vaccine development. Int. J. Infect. Dis. 2015;32:5–12. doi: 10.1016/j.ijid.2014.11.026.
    1. Fletcher H.A. Profiling the host immune response to tuberculosis vaccines. Vaccine. 2015;33:5313–5315. doi: 10.1016/j.vaccine.2015.07.090.
    1. Tam P.H., Lowary T.L. Carbohydrate Chemistry: Chemical and Biological Approaches. Royal Society of Chemistry; London, UK: 2010. Mycobacterial lipoarabinomannan fragments as haptens for potential anti-tuberculosis vaccines; pp. 38–63.
    1. Baxter D. Active and passive immunity, vaccine types, excipients and licensing. Occup. Med. 2007;57:552–556. doi: 10.1093/occmed/kqm110.
    1. Scott C. Classifying vaccines: From cowpox to the cutting edge. BioProcess Int. 2004;2:14–23.
    1. Datta J., Terhune J.H., Lowenfeld L., Cintolo J.A., Xu S., Roses R.E., Czerniecki B.J. Optimizing dendritic cell-based approaches for cancer immunotherapy. Yale J. Biol. Med. 2014;87:491–518.
    1. Amigorena S., Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr. Opin. Immunol. 2010;22:109–117. doi: 10.1016/j.coi.2010.01.022.
    1. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413:732–738. doi: 10.1038/35099560.
    1. Janeway C.A., Jr., Medzhitov R. Innate immune recognition. Annu. Rev. Immunol. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359.
    1. Danishefsky S.J., Allen J.R. From the laboratory to the clinic: A retrospective on fully synthetic carbohydrate-based anticancer vaccines. Angew. Chem. Int. Ed. 2000;39:836–863. doi: 10.1002/(SICI)1521-3773(20000303)39:5<836::AID-ANIE836>;2-I.
    1. Ouerfelli O., Warren J.D., Wilson R.M., Danishefsky S.J. Synthetic carbohydrate-based antitumor vaccines: Challenges and opportunities. Expert Rev. Vaccines. 2005;4:677–685. doi: 10.1586/14760584.4.5.677.
    1. Glunz P.W., Hintermann S., Schwarz J.B., Kuduk S.D., Chen X.T., Williams L.J., Sames D., Danishefsky S.J., Kudryashov V., Lloyd K.O. Probing cell surface “glyco-architecture” through total synthesis. Immunological consequences of a human blood group determinant in a clustered mucin-like context. J. Am. Chem. Soc. 1999;121:10636–10637. doi: 10.1021/ja992309s.
    1. Glunz P.W., Hintermann S., Williams L.J., Schwarz J.B., Kuduk S.D., Kudryashov V., Lloyd K.O., Danishefsky S.J. Design and synthesis of Ley-bearing glycopeptides that mimic cell surface Ley mucin glycoprotein architecture. J. Am. Chem. Soc. 2000;122:7273–7279. doi: 10.1021/ja0011820.
    1. Kudryashov V., Glunz P.W., Williams L.J., Hintermann S., Danishefsky S.J., Lloyd K.O. Toward optimized carbohydrate-based anticancer vaccines: Epitope clustering, carrier structure, and adjuvant all influence antibody responses to Lewisy conjugates in mice. Proc. Natl. Acad. Sci. USA. 2001;98:3264–3269. doi: 10.1073/pnas.051623598.
    1. Toyokuni T., Dean B., Cai S., Boivin D., Hakomori S., Singhal A.K. Synthetic vaccines: Synthesis of a dimeric Tn antigen-lipopeptide conjugate that elicits immune responses against Tn-expressing glycoproteins. J. Am. Chem. Soc. 1994;116:395–396. doi: 10.1021/ja00080a055.
    1. Toyokuni T., Hakomori S.I., Singhal A.K. Synthetic carbohydrate vaccines: Synthesis and immunogenicity of Tn antigen conjugates. Bioorg. Med. Chem. 1994;2:1119–1132. doi: 10.1016/S0968-0896(00)82064-7.
    1. Buskas T., Ingale S., Boons G.J. Towards a fully synthetic carbohydrate-based anticancer vaccine: Synthesis and immunological evaluation of a lipidated glycopeptide containing the tumor-associated Tn antigen. Angew. Chem. Int. Ed. 2005;44:5985–5988. doi: 10.1002/anie.200501818.
    1. Krikorian D., Panou-Pomonis E., Voitharou C., Sakarellos C., Sakarellos-Daitsiotis M. A peptide carrier with a built-in vaccine adjuvant: Construction of immunogenic conjugates. Bioconjugate Chem. 2005;16:812–819. doi: 10.1021/bc049703m.
    1. Brocke C., Kunz H. Synthesis of tumor-associated glycopeptide antigens. Bioorg. Med. Chem. 2002;10:3085–3112. doi: 10.1016/S0968-0896(02)00135-9.
    1. Buskas T., Thompson P., Boons G.J. Immunotherapy for cancer: Synthetic carbohydrate-based vaccines. Chem. Commun. 2009;36:5335–5349. doi: 10.1039/b908664c.
    1. Hanisch F.G. Immunology of MUC1 and Advancements in the Development of MUC1 Glycopeptide Tumor Vaccines: An Update. [(accessed on 7 November 2015)]. Available online: .
    1. Heimburg-Molinaro J., Lum M., Vijay G., Jain M., Almogren A., Rittenhouse-Olson K. Cancer vaccines and carbohydrate epitopes. Vaccine. 2011;29:8802–8826. doi: 10.1016/j.vaccine.2011.09.009.
    1. Morelli L., Poletti L., Lay L. Carbohydrates and immunology: Synthetic oligosaccharide antigens for vaccine formulation. Eur. J. Org. Chem. 2011;29:5723–5777. doi: 10.1002/ejoc.201100296.
    1. Wang L.X. Synthetic carbohydrate antigens for HIV vaccine design. Curr. Opin. Chem. Biol. 2013;17:997–1005. doi: 10.1016/j.cbpa.2013.10.001.
    1. Bernardi A., Jiménez-Barbero J., Casnati A., De Castro C., Darbre T., Fieschi F., Finne J., Funken H., Jaeger K.E., Lahmann M., et al. Multivalent glycoconjugates as anti-pathogenic agents. Chem. Soc. Rev. 2013;42:4709–4727. doi: 10.1039/C2CS35408J.
    1. Azuma I., Seya T. Development of immunoadjuvants for immunotherapy of cancer. Int. Immunopharmacol. 2001;1:1249–1259. doi: 10.1016/S1567-5769(01)00055-8.
    1. Dredge K., Marriott J.B., Todryk S.M., Dalgleish A.G. Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol. Immunother. 2002;51:521–531. doi: 10.1007/s00262-002-0309-z.
    1. Tsan M.F. Toll-like receptors, inflammation and cancer. Semin. Cancer Biol. 2006;16:32–37. doi: 10.1016/j.semcancer.2005.07.004.
    1. Vogel F.R. Immunologic adjuvants for modern vaccine formulations. Ann. N. Y. Acad. Sci. 1995;754:153–160. doi: 10.1111/j.1749-6632.1995.tb44448.x.
    1. Gregory A.E., Titball R., Williamson D. Vaccine delivery using nanoparticles. Front. Cell. Infect. Microbiol. 2013 doi: 10.3389/fcimb.2013.00013.
    1. Krishnamachari Y., Geary S.M., Lemke C.D., Salem A.K. Nanoparticle delivery systems in cancer vaccines. Pharmaceut. Res. 2011;28:215–236. doi: 10.1007/s11095-010-0241-4.
    1. Sahdev P., Ochyl L.J., Moon J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharmaceut. Res. 2014;31:2563–2582. doi: 10.1007/s11095-014-1419-y.
    1. Zhao L., Seth A., Wibowo N., Zhao C.X., Mitter N., Yu C., Middelberg A.P. Nanoparticle vaccines. Vaccine. 2014;32:327–337. doi: 10.1016/j.vaccine.2013.11.069.
    1. Henriksen-Lacey M., Korsholm K.S., Andersen P., Perrie Y., Christensen D. Liposomal vaccine delivery systems. Expert Opin. Drug Deliv. 2011;8:505–519. doi: 10.1517/17425247.2011.558081.
    1. Perrie Y., Crofts F., Devitt A., Griffiths H.R., Kastner E., Nadella V. Designing liposomal adjuvants for the next generation of vaccines. Adv. Drug Deliv. Rev. 2016;99:85–96. doi: 10.1016/j.addr.2015.11.005.
    1. Schwendener R.A. Liposomes as vaccine delivery systems: A review of the recent advances. Ther. Adv. Vaccines. 2014;2:159–182. doi: 10.1177/2051013614541440.
    1. Shashi K., Satinder K., Bharat P. A complete review on: Liposomes. Int. J. Pharm. 2012;3:10–16.
    1. Watson D.S., Endsley A.N., Huang L. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine. 2012;30:2256–2272. doi: 10.1016/j.vaccine.2012.01.070.
    1. Sharma A., Sharma U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997;154:123–140. doi: 10.1016/S0378-5173(97)00135-X.
    1. Shahum E., Thérien H.M. Correlation between in vitro and in vivo behaviour of liposomal antigens. Vaccine. 1994;12:1125–1131. doi: 10.1016/0264-410X(94)90183-X.
    1. Tan L., Weisslg V., Gregorladls G. Comparison of the immune response against polio peptides covalently-surface-linked to and internally-entrapped in liposomes. Asian Pac. J. Allergy Immunol. 2011;9:25–30.
    1. Thérien H.M., Lair D., Shahum E. Liposomal vaccine: Influence of antigen association on the kinetics of the humoral response. Vaccine. 1990;8:558–562. doi: 10.1016/0264-410X(90)90008-A.
    1. Vannier W., Snyder S. Antibody responses to liposome-associated antigen. Immunol. Lett. 1988;19:59–64. doi: 10.1016/0165-2478(88)90120-4.
    1. White W.I., Cassatt D.R., Madsen J., Burke S.J., Woods R.M., Wassef N.M., Alving C.R., Koenig S. Antibody and cytotoxic T-lymphocyte responses to a single liposome-associated peptide antigen. Vaccine. 1995;13:1111–1122. doi: 10.1016/0264-410X(94)00058-U.
    1. Conwell C.C., Huang L. Recent advances in non-viral gene delivery. Adv. Genet. 2005;53:1–18.
    1. Gao X., Huang L. Cationic liposome-mediated gene transfer. Gene Ther. 1995;2:710–722.
    1. Li W., Szoka F., Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 2007;24:438–449. doi: 10.1007/s11095-006-9180-5.
    1. Xu Y., Szoka F.C. Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry. 1996;35:5616–5623. doi: 10.1021/bi9602019.
    1. Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013 doi: 10.1186/1556-276X-8-102.
    1. Huang Z., Li X., Zhang T., Song Y., She Z., Li J., Deng Y. Progress involving new techniques for liposome preparation. Asian J. Pharm. Sci. 2014;9:176–182. doi: 10.1016/j.ajps.2014.06.001.
    1. Patil Y.P., Jadhav S. Novel methods for liposome preparation. Chem. Phys. Lipids. 2014;177:8–18. doi: 10.1016/j.chemphyslip.2013.10.011.
    1. Szoka F., Jr., Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes) Annu. Rev. Biophys. Bioeng. 1980;9:467–508. doi: 10.1146/annurev.bb.09.060180.002343.
    1. Manolova V., Flace A., Bauer M., Schwarz K., Saudan P., Bachmann M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008;38:1404–1413. doi: 10.1002/eji.200737984.
    1. Mann J.F., Shakir E., Carter K.C., Mullen A.B., Alexander J., Ferro V.A. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine. 2009;27:3643–3649. doi: 10.1016/j.vaccine.2009.03.040.
    1. Miyabe H., Hyodo M., Nakamura T., Sato Y., Hayakawa Y., Harashima H. A new adjuvant delivery system ‘cyclic di-GMP/YSK05 liposome’ for cancer immunotherapy. J. Control. Release. 2014;184:20–27. doi: 10.1016/j.jconrel.2014.04.004.
    1. Badiee A., Jaafari M.R., Khamesipour A., Samiei A., Soroush D., Kheiri M.T., Barkhordari F., McMaster W.R., Mahboudi F. Enhancement of immune response and protection in BALB/c mice immunized with liposomal recombinant major surface glycoprotein of Leishmania (rgp63): The role of bilayer composition. Colloids Surf. B. Biointerfaces. 2009;74:37–44. doi: 10.1016/j.colsurfb.2009.06.025.
    1. Garnier F., Forquet F., Bertolino P., Gerlier D. Enhancement of in vivo and in vitro T cell response against measles virus haemagglutinin after its incorporation into liposomes: Effect of the phospholipid composition. Vaccine. 1991;9:340–345. doi: 10.1016/0264-410X(91)90061-A.
    1. Kahl L., Scott C.A., Lelchuk R., Gregoriadis G., Liew F.Y. Vaccination against murine cutaneous leishmaniasis by using Leishmania major antigen/liposomes. Optimization and assessment of the requirement for intravenous immunization. J. Immunol. 1989;142:4441–4449.
    1. Kersten G., van de Put A.M., Teerlink T., Beuvery E.C., Crommelin D.J. Immunogenicity of liposomes and iscoms containing the major outer membrane protein of Neisseria gonorrhoeae: Influence of protein content and liposomal bilayer composition. Infect Immun. 1988;56:1661–1664.
    1. Mazumdar T., Anam K., Ali N. Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens. J. Parasitol. 2005;91:269–274. doi: 10.1645/GE-356R1.
    1. Christensen D., Korsholm K.S., Andersen P., Agger E.M. Cationic liposomes as vaccine adjuvants. Expert Rev. Vaccines. 2011;10:513–521. doi: 10.1586/erv.11.17.
    1. Soema P.C., Willems G.J., Jiskoot W., Amorij J.P., Kersten G.F. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach. Eur. J. Pharm. Biopharm. 2015;94:427–435. doi: 10.1016/j.ejpb.2015.06.026.
    1. Hafez I., Maurer N., Cullis P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8:1188–1196. doi: 10.1038/sj.gt.3301506.
    1. Fan Y., Sahdev P., Ochyl L.J., Akerberg J.J., Moon J.J. Cationic liposome–hyaluronic acid hybrid nanoparticles for intranasal vaccination with subunit antigens. J. Control. Release. 2015;208:121–129. doi: 10.1016/j.jconrel.2015.04.010.
    1. Karmakar P., Lee K., Sarkar S., Wall K.A., Sucheck S.J. Synthesis of a liposomal MUC1 glycopeptide-based immunotherapeutic and evaluation of the effect of l-Rhamnose targeting on cellular immune responses. Bioconjugate Chem. 2016;27:110–120. doi: 10.1021/acs.bioconjchem.5b00528.
    1. Sarkar S., Salyer A.C., Wall K.A., Sucheck S.J. Synthesis and immunological evaluation of a MUC1 glycopeptide incorporated into l-rhamnose displaying liposomes. Bioconjugate Chem. 2013;24:363–375. doi: 10.1021/bc300422a.
    1. Sarkar S., Lombardo S.A., Herner D.N., Talan R.S., Wall K.A., Sucheck S.J. Synthesis of a single-molecule L-rhamnose-containing three-component vaccine and evaluation of antigenicity in the presence of anti-L-rhamnose antibodies. J. Am. Chem. Soc. 2010;132:17236–17246. doi: 10.1021/ja107029z.
    1. Oyelaran O., McShane L.M., Dodd L., Gildersleeve J.C. Profiling human serum antibodies with a carbohydrate antigen microarray. J. Proteome Res. 2009;8:4301–4310. doi: 10.1021/pr900515y.
    1. Jiang P.L., Lin H.J., Wang H.W., Tsai W.Y., Lin S.F., Chien M.Y., Liang P.H., Huang Y.Y., Liu D.Z. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater. 2015;11:356–367. doi: 10.1016/j.actbio.2014.09.019.
    1. Wang T., Zhen Y., Ma X., Wei B., Li S., Wang N. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf. B Biointerfaces. 2015;126:520–530. doi: 10.1016/j.colsurfb.2015.01.005.
    1. Derrick S.C., Yang A., Parra M., Kolibab K., Morris S.L. Effect of cationic liposomes on BCG trafficking and vaccine-induced immune responses following a subcutaneous immunization in mice. Vaccine. 2015;33:126–132. doi: 10.1016/j.vaccine.2014.11.004.
    1. Siddiqui K.F., Amir M., Khan N., Rama Krishna G., Sheikh J.A., Rajagopal K., Agrewala J.N. Prime-boost vaccination strategy with bacillus Calmette-Guerin (BCG) and liposomized alpha-crystalline protein 1 reinvigorates BCG potency. Clin. Exp. Immunol. 2015;181:286–296. doi: 10.1111/cei.12634.
    1. Beck Z., Matyas G.R., Jalah R., Rao M., Polonis V.R., Alving C.R. Differential immune responses to HIV-1 envelope protein induced by liposomal adjuvant formulations containing monophosphoryl lipid A with or without QS21. Vaccine. 2015;33:5578–5587. doi: 10.1016/j.vaccine.2015.09.001.
    1. Hanson M.C., Abraham W., Crespo M.P., Chen S.H., Liu H., Szeto G.L., Kim M., Reinherz E.L., Irvine D.J. Liposomal vaccines incorporating molecular adjuvants and intrastructural T-cell help promote the immunogenicity of HIV membrane-proximal external region peptides. Vaccine. 2015;33:861–868. doi: 10.1016/j.vaccine.2014.12.045.
    1. Neumann S., Young K., Compton B., Anderson R., Painter G., Hook S. Synthetic TRP2 long-peptide and alpha-galactosylceramide formulated into cationic liposomes elicit CD8(+) T-cell responses and prevent tumour progression. Vaccine. 2015;33:5838–5844. doi: 10.1016/j.vaccine.2015.08.083.
    1. Yuba E., Kanda Y., Yoshizaki Y., Teranishi R., Harada A., Sugiura K., Izawa T., Yamate J., Sakaguchi N., Koiwai K., et al. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-gamma gene lipoplex for efficient cancer immunotherapy. Biomaterials. 2015;67:214–224. doi: 10.1016/j.biomaterials.2015.07.031.
    1. Nakamura T., Yamazaki D., Yamauchi J., Harashima H. The nanoparticulation by octaarginine-modified liposome improves α-galactosylceramide-mediated antitumor therapy via systemic administration. J. Control. Release. 2013;171:216–224. doi: 10.1016/j.jconrel.2013.07.004.
    1. Lanzi A., Fehres C.M., de Gruijl T.D., van Kooyk Y., Mastrobattista E. Effects of antigen-expressing immunostimulatory liposomes on chemotaxis and maturation of dendritic cells in Vitro and in human skin explants. Pharmaceut. Res. 2014;31:516–526. doi: 10.1007/s11095-013-1179-0.
    1. Carrera I., Etcheverría I., Fernández-Novoa L., Lombardi V.R., Lakshmana M.K., Cacabelos R., Vigo C. A Comparative Evaluation of a Novel Vaccine in APP/PS1 Mouse Models of Alzheimer’s Disease. BioMed Res. Int. 2015 doi: 10.1155/2015/807146.
    1. Saravanan P., Sreenivasa B.P., Selvan R.P., Basagoudanavar S.H., Hosamani M., Reddy N.D., Nathanielsz J., Derozier C., Venkataramanan R. Protective immune response to liposome adjuvanted high potency foot-and-mouth disease vaccine in Indian cattle. Vaccine. 2015;33:670–677. doi: 10.1016/j.vaccine.2014.12.008.
    1. Bolhassani A., Javanzad S., Saleh T., Hashemi M., Aghasadeghi M.R., Sadat S.M. Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases. Hum. Vaccines Immunother. 2014;10:321–332. doi: 10.4161/hv.26796.
    1. De Souza Rebouças J., Esparza I., Ferrer M., Sanz M.L., Irache J.M., Gamazo C. Nanoparticulate adjuvants and delivery systems for allergen immunotherapy. BioMed Res. Int. 2012 doi: 10.1155/2012/474605.
    1. Hadinoto K., Sundaresan A., Cheow W.S. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. 2013;85:427–443. doi: 10.1016/j.ejpb.2013.07.002.
    1. Kunugi S., Yamaoka T. Polymers in Nanomedicine. Springer Science & Business Media; Berlin, Germany: 2012.
    1. Morachis J.M., Mahmoud E.A., Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev. 2012;64:505–519. doi: 10.1124/pr.111.005363.
    1. Yue H., Ma G. Polymeric micro/nanoparticles: Particle design and potential vaccine delivery applications. Vaccine. 2015;33:5927–5936. doi: 10.1016/j.vaccine.2015.07.100.
    1. Silva A.L., Rosalia R.A., Varypataki E., Sibuea S., Ossendorp F., Jiskoot W. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: Particle uptake by dendritic cells is a key parameter for immune activation. Vaccine. 2015;33:847–854. doi: 10.1016/j.vaccine.2014.12.059.
    1. Rahimian S., Fransen M.F., Kleinovink J.W., Christensen J.R., Amidi M., Hennink W.E., Ossendorp F. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J. Control. Release. 2015;203:16–22. doi: 10.1016/j.jconrel.2015.02.006.
    1. Kumar S., Anselmo A.C., Banerjee A., Zakrewsky M., Mitragotri S. Shape and size-dependent immune response to antigen-carrying nanoparticles. J. Control. Release. 2015;220:141–148. doi: 10.1016/j.jconrel.2015.09.069.
    1. Mueller S.N., Tian S., DeSimone J.M. Rapid and persistent delivery of antigen by lymph node targeting PRINT nanoparticle vaccine carrier to promote humoral immunity. Mol. Pharmacol. 2015;12:1356–1365. doi: 10.1021/mp500589c.
    1. Tan J., Shah S., Thomas A., Ou-Yang H.D., Liu Y. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluid. Nanofluid. 2013;14:77–87. doi: 10.1007/s10404-012-1024-5.
    1. Anselmo A.C., Zhang M., Kumar S., Vogus D.R., Menegatti S., Helgeson M.E., Mitragotri S. Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano. 2015;9:3169–3177. doi: 10.1021/acsnano.5b00147.
    1. Shima F., Akagi T., Akashi M. The role of hydrophobicity in the disruption of erythrocyte membrane by nanoparticles composed of hydrophobically modified poly(gamma-glutamic acid) J. Biomater. Sci. Polym. Ed. 2014;25:203–210. doi: 10.1080/09205063.2013.848328.
    1. Silva J.M., Zupancic E., Vandermeulen G., Oliveira V.G., Salgado A., Videira M., Gaspar M., Graca L., Préat V., Florindo H.F. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. J. Control. Release. 2015;198:91–103. doi: 10.1016/j.jconrel.2014.11.033.
    1. Saluja S.S., Hanlon D.J., Sharp F.A., Hong E., Khalil D., Robinson E., Tigelaar R., Fahmy T.M., Edelson R.L. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int. J. Nanomedicine. 2014;9:5231–5346.
    1. Rosalia R.A., Cruz L.J., van Duikeren S., Tromp A.T., Silva A.L., Jiskoot W., de Gruijl T., Löwik C., Oostendorp J., van der Burg S.H., et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials. 2015;40:88–97. doi: 10.1016/j.biomaterials.2014.10.053.
    1. Fang R.H., Hu C.M., Luk B.T., Gao W., Copp J.A., Tai Y., O’Connor D.E., Zhang L. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14:2181–2188. doi: 10.1021/nl500618u.
    1. Heo M.B., Cho M.Y., Lim Y.T. Polymer nanoparticles for enhanced immune response: Combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta Biomater. 2014;10:2169–2176. doi: 10.1016/j.actbio.2013.12.050.
    1. Hu Y., Hoerle R., Ehrich M., Zhang C. Engineering the lipid layer of lipid-PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta Biomater. 2015;28:149–159. doi: 10.1016/j.actbio.2015.09.032.
    1. Kumar R., Ledet G., Graves R., Datta D., Robinson S., Bansal G.P., Mandal T., Kumar N. Potent functional immunogenicity of plasmodium falciparum transmission-blocking antigen (Pfs25) delivered with nanoemulsion and porous polymeric nanoparticles. Pharmaceut. Res. 2015;32:3827–3836. doi: 10.1007/s11095-015-1743-x.
    1. Moon J.J., Suh H., Polhemus M.E., Ockenhouse C.F., Yadava A., Irvine D.J. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PLoS ONE. 2012;7:12. doi: 10.1371/journal.pone.0031472.
    1. Orozco V.H., Palacio J., Sierra J., López B.L. Increased covalent conjugation of a model antigen to poly(lactic acid)-g-maleic anhydride nanoparticles compared to bare poly(lactic acid) nanoparticles. Colloid Polym. Sci. 2013;291:2775–2781. doi: 10.1007/s00396-013-3023-9.
    1. Rahimian S., Kleinovink J.W., Fransen M.F., Mezzanotte L., Gold H., Wisse P., Overkleeft H., Amidi M., Jiskoot W., Löwik C.W., et al. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: In vivo tracking and evaluation of antigen-specific CD8(+) T cell immune response. Biomaterials. 2015;37:469–477. doi: 10.1016/j.biomaterials.2014.10.043.
    1. Kunda N.K., Alfagih I.M., Miyaji E.N., Figueiredo D.B., Gonçalves V.M., Ferreira D.M., Dennison S.R., Somavarapu S., Hutcheon G.A., Saleem I.Y. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles. Int. J. Pharm. 2015;495:903–912. doi: 10.1016/j.ijpharm.2015.09.034.
    1. Zhang P., Chiu Y.C., Tostanoski L.H., Jewell C.M. Polyelectrolyte multilayers assembled entirely from immune signals on gold nanoparticle templates promote antigen-specific T cell response. ACS Nano. 2015;9:6465–6477. doi: 10.1021/acsnano.5b02153.
    1. Chiu Y.C., Gammon J.M., Andorko J.I., Tostanoski L.H., Jewell C.M. Modular vaccine design using carrier-free capsules assembled from polyionic immune signals. ACS Biomater. Sci. Eng. 2015;1:1200–1205. doi: 10.1021/acsbiomaterials.5b00375.
    1. Chiodo F., Enríquez-Navas P.M., Angulo J., Marradi M., Penadés S. Assembling different antennas of the gp120 high mannose-type glycans on gold nanoparticles provides superior binding to the anti-HIV antibody 2G12 than the individual antennas. Carbohydr. Res. 2015;405:102–109. doi: 10.1016/j.carres.2014.07.012.
    1. Almeida J.P., Lin A.Y., Figueroa E.R., Foster A.E., Drezek R.A. In vivo gold nanoparticle delivery of peptide vaccine induces anti-tumor immune response in prophylactic and therapeutic tumor models. Small. 2015;11:1453–1459. doi: 10.1002/smll.201402179.
    1. Biswas S., Medina S.H., Barchi J.J. Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles. Carbohydr. Res. 2015;405:93–101. doi: 10.1016/j.carres.2014.11.002.
    1. Mocan T., Matea C., Tabaran F., Iancu C., Orasan R., Mocan L. In vitro administration of gold nanoparticles functionalized with MUC-1 protein fragment generates anticancer vaccine response via macrophage activation and polarization mechanism. J. Cancer. 2015;6:583–592. doi: 10.7150/jca.11567.
    1. Tavernaro I., Hartmann S., Sommer L., Hausmann H., Rohner C., Ruehl M., Hoffmann-Roeder A., Schlecht S. Synthesis of tumor-associated MUC1-glycopeptides and their multivalent presentation by functionalized gold colloids. Org. Biomol. Chem. 2015;13:81–97. doi: 10.1039/C4OB01339E.
    1. Tao W., Gill H.S. M2e-immobilized gold nanoparticles as influenza a vaccine: Role of soluble M2e and longevity of protection. Vaccine. 2015;33:2307–2315. doi: 10.1016/j.vaccine.2015.03.063.
    1. Kumar R., Ray P.C., Datta D., Bansal G.P., Angov E., Kumar N. Nanovaccines for malaria using plasmodium falciparum antigen Pfs25 attached gold nanoparticles. Vaccine. 2015;33:5064–5071. doi: 10.1016/j.vaccine.2015.08.025.
    1. Dykman L.A., Staroverov S.A., Mezhenny P.V., Fomin A.S., Kozlov S.V., Volkov A.A., Laskavy V.N., Shchyogolev S.Y. Use of a synthetic foot-and-mouth disease virus peptide conjugated to gold nanoparticles for enhancing immunological response. Gold Bull. 2015;48:93–101. doi: 10.1007/s13404-015-0165-1.
    1. Gianvincenzo P.D., Calvo J., Perez S., Álvarez A., Bedoya L.M., Alcamí J., Penadés S. Negatively charged glyconanoparticles modulate and stabilize the secondary structures of a gp120 V3 loop peptide: Toward fully synthetic HIV vaccine candidates. Bioconjugate Chem. 2015;26:755–765. doi: 10.1021/acs.bioconjchem.5b00077.
    1. Sungsuwan S., Yin Z., Huang X. Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl. Mater. Interfaces. 2015;7:17535–17544. doi: 10.1021/acsami.5b05497.
    1. Ramella D., Polito L., Mazzini S., Ronchi S., Scaglioni L., Marelli M., Lay L. A strategy for multivalent presentation of carba analogues from N. meningitidis a capsular polysaccharide. Eur. J. Org. Chem. 2014;27:5915–5924. doi: 10.1002/ejoc.201402701.
    1. den Brok M.H., Sutmuller R.P., van der Voort R., Bennink E.J., Figdor C.G., Ruers T.J., Adema G.J. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res. 2004;64:4024–4029. doi: 10.1158/0008-5472.CAN-03-3949.
    1. O’Neal D.P., Hirsch L.R., Halas N.J., Payne J.D., West J.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 2004;209:171–176. doi: 10.1016/j.canlet.2004.02.004.
    1. Ito A., Kobayashi T. Intracellular hyperthermia using magnetic nanoparticles: A novel method for hyperthermia clinical applications. Therm. Med. 2008;24:113–129. doi: 10.3191/thermalmed.24.113.
    1. Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotech. J. 2011;6:1342–1347. doi: 10.1002/biot.201100045.

Source: PubMed

3
S'abonner