Intensified tuberculosis treatment to reduce the mortality of HIV-infected and uninfected patients with tuberculosis meningitis (INTENSE-TBM): study protocol for a phase III randomized controlled trial

Thomas Maitre, Maryline Bonnet, Alexandra Calmy, Mihaja Raberahona, Rivonirina Andry Rakotoarivelo, Niaina Rakotosamimanana, Juan Ambrosioni, José M Miró, Pierre Debeaudrap, Conrad Muzoora, Angharad Davis, Graeme Meintjes, Sean Wasserman, Robert Wilkinson, Serge Eholié, Frédéric Ello Nogbou, Maria-Camilla Calvo-Cortes, Corine Chazallon, Vanessa Machault, Xavier Anglaret, Fabrice Bonnet, Thomas Maitre, Maryline Bonnet, Alexandra Calmy, Mihaja Raberahona, Rivonirina Andry Rakotoarivelo, Niaina Rakotosamimanana, Juan Ambrosioni, José M Miró, Pierre Debeaudrap, Conrad Muzoora, Angharad Davis, Graeme Meintjes, Sean Wasserman, Robert Wilkinson, Serge Eholié, Frédéric Ello Nogbou, Maria-Camilla Calvo-Cortes, Corine Chazallon, Vanessa Machault, Xavier Anglaret, Fabrice Bonnet

Abstract

Background: Tuberculous meningitis (TBM) is the most lethal and disabling form of tuberculosis (TB), particularly in sub-Saharan Africa. Current anti-TB treatment is poorly effective since TBM mortality reaches 40% in HIV-negative patients and up to 70% in HIV-co-infected patients. To reduce TBM-induced morbidity and mortality, the INTENSE-TBM trial evaluates two interventions in both HIV-infected and uninfected patients: an anti-TB treatment intensification using oral high-dose rifampicin (35 mg/kg daily) and linezolid (1200 mg daily and then 600 mg daily) during the first 8 weeks of the anti-TB treatment and the use of adjunctive aspirin (200 mg daily).

Methods: This is a randomized controlled, phase III, multicenter, 2 × 2 factorial plan superiority trial. The trial has four arms, combining the two experimental treatments (intensified TBM regimen and aspirin) with the two reference treatments (WHO standard TB treatment and placebo), and is open-label for anti-TB treatment and double-blind placebo-controlled for aspirin treatment. This trial is conducted in adults or adolescents of age ≥15 years with TBM defined as "definite," "probable," or "possible" using Tuberculosis Meningitis International Research Consortium criteria, in four African countries: Ivory Coast, Madagascar, Uganda, and South Africa. The primary outcome is all-cause death between inclusion and week 40.

Discussion: The INTENSE-TBM trial represents a key opportunity to enhance TBM treatment with widely available existing drugs notably in high-incidence settings of both TB and HIV. The trial design is pragmatic and the results will permit early and effective applications in TBM patient care, in both HIV and TB high-incidence countries.

Trial registration: ClinicalTrials.gov NCT04145258. Registered on October 30, 2019.

Keywords: Aspirin; HIV, High-dose rifampicin; Linezolid; Randomized controlled trial; Tuberculous meningitis.

Conflict of interest statement

J.M. Miro has received consulting honoraria and/or research grants from AbbVie, Angelini, Contrafect, Genentech, Gilead Sciences, Jansen, Lysovant, Medtronic, MSD, Novartis, Pfizer, and ViiV Healthcare, outside the submitted work. F. Bonnet has received consulting honoraria and/or research grants from Gilead Sciences, Jansen, MSD, and ViiV Healthcare, outside the submitted work. The other authors have any competing interest to declare.

© 2022. The Author(s).

References

    1. World Health Organization. Global tuberculosis report 2021. 2021. .
    1. Wilkinson RJ, Rohlwink U, Misra UK, van Crevel R, Mai NTH, Dooley KE, et al. Tuberculous meningitis. Nat Rev Neurol. 2017;13:581–598. doi: 10.1038/nrneurol.2017.120.
    1. Gomes T, Reis-Santos B, Bertolde A, Johnson JL, Riley LW, Maciel EL. Epidemiology of extrapulmonary tuberculosis in Brazil: a hierarchical model. BMC Infect Dis. 2014;14:9. doi: 10.1186/1471-2334-14-9.
    1. Tenforde MW, Mokomane M, Leeme TB, Tlhako N, Tsholo K, Chebani T, et al. Mortality in adult patients with culture-positive and culture-negative meningitis in the Botswana national meningitis survey: a prevalent cohort study. Lancet Infect Dis. 2019;19:740–749. doi: 10.1016/S1473-3099(19)30066-0.
    1. Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis. 2017;17:39–49. doi: 10.1016/S1473-3099(16)30274-2.
    1. Aarnoutse RE, Kibiki GS, Reither K, Semvua HH, Haraka F, Mtabho CM, et al. Pharmacokinetics, Tolerability, and Bacteriological Response of Rifampin Administered at 600, 900, and 1,200 Milligrams Daily in Patients with Pulmonary Tuberculosis. Antimicrob Agents Chemother. 2017;61:e01054–e01017. doi: 10.1128/AAC.01054-17.
    1. Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med. 2015;191:1058–1065. doi: 10.1164/rccm.201407-1264OC.
    1. Donald PR. Chemotherapy for Tuberculous Meningitis. N Engl J Med. 2016;374:179–181. doi: 10.1056/NEJMe1511990.
    1. Ruslami R, Ganiem AR, Dian S, Apriani L, Achmad TH, van der Ven AJ, et al. Intensified regimen containing rifampicin and moxifloxacin for tuberculous meningitis: an open-label, randomised controlled phase 2 trial. Lancet Infect Dis. 2013;13:27–35. doi: 10.1016/S1473-3099(12)70264-5.
    1. Heemskerk AD, Bang ND, Mai NTH, Chau TTH, Phu NH, Loc PP, et al. Intensified Antituberculosis Therapy in Adults with Tuberculous Meningitis. N Engl J Med. 2016;374:124–134. doi: 10.1056/NEJMoa1507062.
    1. Dian S, Yunivita V, Ganiem AR, Pramaesya T, Chaidir L, Wahyudi K, et al. Double-Blind, Randomized, Placebo-Controlled Phase II Dose-Finding Study To Evaluate High-Dose Rifampin for Tuberculous Meningitis. Antimicrob Agents Chemother. 2018;62:e01014–e01018. doi: 10.1128/AAC.01014-18.
    1. Dietze R, Hadad DJ, McGee B, Molino LPD, Maciel ELN, Peloquin CA, et al. Early and extended early bactericidal activity of linezolid in pulmonary tuberculosis. Am J Respir Crit Care Med. 2008;178:1180–1185. doi: 10.1164/rccm.200806-892OC.
    1. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. 2012;367:1508–1518. doi: 10.1056/NEJMoa1201964.
    1. Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23:858–883. doi: 10.1128/CMR.00007-10.
    1. Yogev R, Damle B, Levy G, Nachman S. Pharmacokinetics and distribution of linezolid in cerebrospinal fluid in children and adolescents. Pediatr Infect Dis J. 2010;29:827–830. doi: 10.1097/INF.0b013e3181df4b9a.
    1. Hashimoto S, Honda K, Fujita K, Miyachi Y, Isoda K, Misaka K, et al. Effect of coadministration of rifampicin on the pharmacokinetics of linezolid: clinical and animal studies. J Pharm Health Care Sci. 2018;4:27. doi: 10.1186/s40780-018-0123-1.
    1. Gandelman K, Zhu T, Fahmi OA, Glue P, Lian K, Obach RS, et al. Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. J Clin Pharmacol. 2011;51:229–236. doi: 10.1177/0091270010366445.
    1. Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother. 2012;67:2034–2042. doi: 10.1093/jac/dks153.
    1. Wasserman S, Denti P, Brust JCM, Tareq M, Hlungulu S, Wiesner L, et al. Linezolid pharmacokinetics in South African patients with drug resistant tuberculosis and a high prevalence of HIV co-infection. Antimicrob Agents Chemother. 2019;63:e02164–e02118. doi: 10.1128/AAC.02164-18.
    1. Villar M, Sotgiu G, D’Ambrosio L, Raymundo E, Fernandes L, Barbedo J, et al. Linezolid safety, tolerability and efficacy to treat multidrug- and extensively drug-resistant tuberculosis. Eur Respir J. 2011;38:730–733. doi: 10.1183/09031936.00195210.
    1. Misra UK, Kalita J, Maurya PK. Stroke in tuberculous meningitis. J Neurol Sci. 2011;303:22–30. doi: 10.1016/j.jns.2010.12.015.
    1. Thwaites GE, Nguyen DB, Nguyen HD, Hoang TQ, Do TTO, Nguyen TCT, et al. Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med. 2004;351:1741–1751. doi: 10.1056/NEJMoa040573.
    1. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–235. doi: 10.1038/newbio231232a0.
    1. Mai NT, Dobbs N, Phu NH, Colas RA, Thao LT, Thuong NT, et al. A randomised double blind placebo controlled phase 2 trial of adjunctive aspirin for tuberculous meningitis in HIV-uninfected adults. eLife. 2018;7:e33478. doi: 10.7554/eLife.33478.
    1. World Health Organization. consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. 2016. .
    1. Rutherford GW, Horvath H. Dolutegravir Plus Two Nucleoside Reverse Transcriptase Inhibitors versus Efavirenz Plus Two Nucleoside Reverse Transcriptase Inhibitors As Initial Antiretroviral Therapy for People with HIV: A Systematic Review. PLoS One. 2016;11:e0162775. doi: 10.1371/journal.pone.0162775.
    1. Marais BJ, Heemskerk AD, Marais SS, van Crevel R, Rohlwink U, Caws M, et al. Standardized Methods for Enhanced Quality and Comparability of Tuberculous Meningitis Studies. Clin Infect Dis. 2017;64:501–509.
    1. Yunivita V, Dian S, Ganiem AR, Hayati E, Hanggono Achmad T, Purnama Dewi A, et al. Pharmacokinetics and safety/tolerability of higher oral and intravenous doses of rifampicin in adult tuberculous meningitis patients. Int J Antimicrob Agents. 2016;48:415–421. doi: 10.1016/j.ijantimicag.2016.06.016.
    1. Wasserman S, Davis A, Stek C, Chirehwa M, Botha S, Daroowala R, et al. Plasma Pharmacokinetics of High-Dose Oral versus Intravenous Rifampicin in Patients with Tuberculous Meningitis: a Randomized Controlled Trial. Antimicrob Agents Chemother. 2021;65:e0014021. doi: 10.1128/AAC.00140-21.
    1. World Health Organization. Guidelines for managing advanced HIV disease and rapid initiation of antiretroviral therapy. [Internet]. 2017. Available from: . [Cited 2021 Jan 11].
    1. World Health Organization, Special Programme for Research and Training in Tropical Diseases. Good clinical laboratory practice (GCLP). [Internet]. Geneva, Switzerland: World Health Organization; 2009. Available from: . [Cited 2020 Nov 30].
    1. Clinical Trial Management Adaptation to ICH E6 (R2): Good Clinical Practice [Internet]. ISPE | International Society for Pharmaceutical Engineering. Available from: . [Cited 2020 Nov 30].
    1. Ariza-Vioque E, Ello F, Andriamamonjisoa H, Machault V, González-Martín J, Calvo-Cortés MC, et al. Capacity Building in Sub-Saharan Africa as Part of the INTENSE-TBM Project During the COVID-19 Pandemic. Infect Dis Ther. 2022:1–15. 10.1007/s40121-022-00667-z.
    1. Cresswell FV, Ssebambulidde K, Grint D, Te Brake L, Musabire A, Atherton RR, et al. High dose oral and intravenous rifampicin for improved survival from adult tuberculous meningitis: a phase II open-label randomised controlled trial (the RifT study) Wellcome Open Res. 2018;3:83. doi: 10.12688/wellcomeopenres.14691.1.
    1. Svensson EM, Dian S, Te Brake L, Ganiem AR, Yunivita V, van Laarhoven A, et al. Model-Based Meta-analysis of Rifampicin Exposure and Mortality in Indonesian Tuberculous Meningitis Trials. Clin Infect Dis. 2020;71:1817–1823. doi: 10.1093/cid/ciz1071.

Source: PubMed

3
S'abonner