Prevalence and genetic diversity of Trichomonas vaginalis clinical isolates in a targeted population in Xinxiang City, Henan Province, China

Zhenchao Zhang, Lixia Kang, Weijuan Wang, Xin Zhao, Yuhua Li, Qing Xie, Shuai Wang, Tong He, Han Li, Tingwei Xiao, Yunchao Chen, Suqiong Zuo, Lingmin Kong, Pengju Li, Xiangrui Li, Zhenchao Zhang, Lixia Kang, Weijuan Wang, Xin Zhao, Yuhua Li, Qing Xie, Shuai Wang, Tong He, Han Li, Tingwei Xiao, Yunchao Chen, Suqiong Zuo, Lingmin Kong, Pengju Li, Xiangrui Li

Abstract

Background: Trichomonas vaginalis (TV) is a protozoan parasite that causes trichomoniasis, a sexually transmitted disease, worldwide. In this study, we investigated the prevalence and genetic characterization of T. vaginalis and contrasted the most prevalent strains of T. vaginalis isolated from Xinxiang City, Henan Province, China.

Results: In Xinxiang from September 2015 to September 2017, a total of 267 (1.64%, 95% confidence interval, CI: 1.45-1.85) clinical T. vaginalis-positive samples from vaginal secretions were observed by wet mount microscopy from 16,294 women with some clinical symptoms of trichomoniasis. We found that trichomoniasis frequently occurred in the 21- to 40-year-old age group and in winter. After the 267 clinical T. vaginalis positive samples were cultured, 68 isolates of T. vaginalis were harvested and identified as genotype E (58.82%), H (17.65%), mixed 1 (17.65%) and mixed 2 (5.88%) using a sensitive and reliable polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) typing method on the actin gene. The phylogenetic diversity analysis showed that the genotype E samples fell within a separate clade compared to the other T. vaginalis isolates, while the samples of the genotype H separated into two clades.

Conclusions: Our results demonstrate a notable gene polymorphism of clinical isolates from the targeted population and provide insight into the performance of these genetic markers in the molecular epidemiology of trichomoniasis. However, further studies are needed to clarify the association between a certain genotype and the pathogenicity of T. vaginalis.

Keywords: China; Genetic diversity; Prevalence; Trichomonas vaginalis.

Conflict of interest statement

Ethics approval and consent to participate

The study was reviewed and approved by the Ethics Review Committee of Xinxiang Medical University (Reference No. 2015016).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Epidemic characteristics of trichomoniasis by age and season in Xinxiang. a Prevalence of T. vaginalis in different age groups. b Prevalence of T. vaginalis in the four seasons of the year
Fig. 2
Fig. 2
DNA fragment patterns of isolates after the digestion of actin genotypes E (a), H (b), mixed 1 (c) and mixed 2 (d) on 3% agarose gel. Lane M: 2000 bp DNA marker; Lane 1: banding patterns after digestion with HindII; Lane 2: banding patterns after digestion with RsaI; Lane 3: banding patterns after digestion with MseI
Fig. 3
Fig. 3
Percentage of actin genotypes E, H, mixed 1 and mixed 2 of the isolates
Fig. 4
Fig. 4
A phylogenetic tree of Xinxiang and reference trichomonad isolates, based on the actin gene. The five sequence types identified in this study are shown with a dark square

References

    1. Bouchemal K, Bories C, Loiseau PM. Strategies for prevention and treatment of Trichomonas vaginalis infections. Clin Microbiol Rev. 2017;30:811–825. doi: 10.1128/CMR.00109-16.
    1. Moodley D, Sartorius B, Madurai S, Chetty V, Maman S. Pregnancy outcomes in association with STDs including genital HSV-2 shedding in a South African cohort study. Sex Transm Infect. 2017;93:460–466. doi: 10.1136/sextrans-2017-053113.
    1. Gratrix J, Plitt S, Turnbull L, Smyczek P, Brandley J, Scarrott R, et al. Trichomonas vaginalis prevalence and correlates in women and men attending STI clinics in western Canada. Sex Transm Dis. 2017;44:627–9.
    1. Mukanyangezi MF, Sengpiel V, Manzi O, Tobin G, Rulisa S, Bienvenu E, et al. Screening for human papillomavirus, cervical cytological abnormalities and associated risk factors in HIV-positive and HIV-negative women in Rwanda. HIV Med. 2018;19:152–166. doi: 10.1111/hiv.12564.
    1. Paulishmiller TE, Augostini P, Schuyler JA, Smith WL, Mordechai E, Adelson ME, et al. Trichomonas vaginalis metronidazole resistance is associated with single nucleotide polymorphisms in the nitroreductase genes ntr4Tv and ntr6Tv. Antimicrob Agents Chemother. 2014;58:2938–2943. doi: 10.1128/AAC.02370-13.
    1. Workowski KA, Berman SM. Centers for disease control and prevention sexually transmitted disease treatment guidelines. Clin Infect Dis. 2007;44(Suppl 3):S73–6. doi: 10.1086/511430.
    1. Momeni Z, Sadraei J, Kazemi B, Dalimi A. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-RFLP in Iran. Exp Parasitol. 2015;159:259–263. doi: 10.1016/j.exppara.2015.10.011.
    1. Singh B. Molecular methods for diagnosis and epidemiological studies of parasitic infections. Int J Parasitol. 1997;27:1135–1145. doi: 10.1016/S0020-7519(97)00111-2.
    1. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315:207–212. doi: 10.1126/science.1132894.
    1. Espinosa N, Hernández R, López-Griego L, Arroyo R, López-Villaseñor I. Differences between coding and non-coding regions in the Trichomonas vaginalis genome: an actin gene as a locus model. Acta Trop. 2001;78:147–154. doi: 10.1016/S0001-706X(00)00180-7.
    1. Drouin G, Moniz de Sa M, Zuker M. The Giardia lamblia actin gene and the phylogeny of eukaryotes. J Mol Evol. 1995;41:841–849. doi: 10.1007/BF00173163.
    1. Crucitti T, Abdellati S, Van DE, Buvé A. Molecular typing of the actin gene of Trichomonas vaginalis isolates by PCR-restriction fragment length polymorphism. Clin Microbiol Infect. 2008;14:844–852. doi: 10.1111/j.1469-0691.2008.02034.x.
    1. Crucitti T, Jespers V, Mulenga C, Khondowe S, Vandepitte J, Buvé A. Trichomonas vaginalis is highly prevalent in adolescent girls, pregnant women, and commercial sex workers in Ndola, Zambia. Sex Transm Dis. 2010;37:223–227.
    1. Tavakoli Oliaee R, Babaei Z, Hatam GR, Tavakoli Kareshk A, Mahmoudvand H, Vafafar A, et al. Considerable genetic diversity of Trichomonas vaginalis clinical isolates in a targeted population in South of Iran. Iran J Parasitol. 2017;12:251–259.
    1. Carrillo-Avila JA, Serrano-Garcia ML, Fernandez-Parra J, Sorlozano-Puerto A, Navarro-Mari JM, Stensvold CR, et al. Prevalence and genetic diversity of Trichomonas vaginalis in the general population of Granada and co-infections with Gardnerella vaginalis and Candida species. J Med Microbiol. 2017;66:1436–1442. doi: 10.1099/jmm.0.000603.
    1. Park JJ, Seo YB, Jeong S, Lee J. Prevalence of and risk factors for sexually transmitted infections among Korean adolescents under probation. J Korean Med Sci. 2017;32:1771–1778. doi: 10.3346/jkms.2017.32.11.1771.
    1. Luo L, Reilly KH, Xu JJ, Wang GX, Ding GW, Wang N, et al. Prevalence and correlates of Trichomonas vaginalis infection among female sex workers in a city in Yunnan Province, China. Int J STD AIDS. 2016;27:469–475. doi: 10.1177/0956462415585449.
    1. Conrad MD, Gorman AW, Schillinger JA, Fiori PL, Arroyo R, Malla N, et al. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis. PLoS Negl Trop Dis. 2012;6:e1573. doi: 10.1371/journal.pntd.0001573.
    1. Vanacova S, Tachezy J, Kulda J, Flegr J. Characterization of trichomonad species and strains by PCR fingerprinting. J Eukaryot Microbiol. 1997;44:545–552. doi: 10.1111/j.1550-7408.1997.tb05960.x.
    1. Meade JC, de Mestral J, Stiles JK, Secor WE, Finley RW, Cleary JD, et al. Genetic diversity of Trichomonas vaginalis clinical isolates determined by EcoRI restriction fragment length polymorphism of heat-shock protein 70 genes. Am J Trop Med Hyg. 2009;80:245–251.
    1. Masha SC, Cools P, Crucitti T, Sanders EJ, Vaneechoutte M. Molecular typing of Trichomonas vaginalis isolates by actin gene sequence analysis and carriage of T. vaginalis viruses. Parasit Vectors. 2017;10:537. doi: 10.1186/s13071-017-2496-7.
    1. Mao M, Liu HL. Genetic diversity of Trichomonas vaginalis clinical isolates from Henan Province in central China. Pathog Glob Health. 2015;109:242–246. doi: 10.1179/2047773215Y.0000000020.
    1. Conrad M, Zubacova Z, Dunn LA, Upcroft J, Sullivan SA, Tachezy J, et al. Microsatellite polymorphism in the sexually transmitted human pathogen Trichomonas vaginalis indicates a genetically diverse parasite. Mol Biochem Parasitol. 2011;175:30–38. doi: 10.1016/j.molbiopara.2010.08.006.
    1. Snipes LJ, Gamard PM, Narcisi EM, Beard CB, Lehmann T, Secor WE. Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. J Clin Microbiol. 2000;38:3004–3009.

Source: PubMed

3
S'abonner