A multicenter, randomized controlled comparison of three renutrition strategies for the management of moderate acute malnutrition among children aged from 6 to 24 months (the MALINEA project)

Muriel Vray, Boris G Hedible, Pierrick Adam, Laura Tondeur, Alexandre Manirazika, Rindra Randremanana, Halima Mainassara, André Briend, Cecile Artaud, Cassandre von Platen, Mathias Altmann, Ronan Jambou, Muriel Vray, Boris G Hedible, Pierrick Adam, Laura Tondeur, Alexandre Manirazika, Rindra Randremanana, Halima Mainassara, André Briend, Cecile Artaud, Cassandre von Platen, Mathias Altmann, Ronan Jambou

Abstract

Background: The aim of this open-label, randomized controlled trial conducted in four African countries (Madagascar, Niger, Central African Republic, and Senegal) is to compare three strategies of renutrition for moderate acute malnutrition (MAM) in children based on modulation of the gut microbiota with enriched flours alone, enriched flours with prebiotics or enriched flours coupled with antibiotic treatment.

Methods: To be included, children aged between 6 months and 2 years are preselected based on mid-upper-arm circumference (MUAC) and are included based on a weight-for-height Z-score (WHZ) between - 3 and - 2 standard deviations (SD). As per current protocols, children receive renutrition treatment for 12 weeks and are assessed weekly to determine improvement. The primary endpoint is recovery, defined by a WHZ ≥ - 1.5 SD after 12 weeks of treatment. Data collected include clinical and socioeconomic characteristics, side effects, compliance and tolerance to interventions. Metagenomic analysis of gut microbiota is conducted at inclusion, 3 months, and 6 months. The cognitive development of children is evaluated in Senegal using only the Developmental Milestones Checklist II (DMC II) questionnaire at inclusion and at 3, 6, and 9 months. The data will be correlated with renutrition efficacy and metagenomic data.

Discussion: This study will provide new insights for the treatment of MAM, as well as original data on the modulation of gut microbiota during the renutrition process to support (or not) the microbiota hypothesis of malnutrition.

Trial registration: ClinicalTrials.gov, ID: NCT03474276 Last update 28 May 2018.

Keywords: Azithromycin; Metagenomic; Microbiota; Moderate acute malnutrition; Prebiotic.

Conflict of interest statement

Ethics approval and consent to participate

This study was conducted according to the protocol and ethical principles with their origins in the Declaration of Helsinki. The research protocol was approved by (1) the FDA-approved IRB (Institutional Review Board) and the CoRC (Clinical Research Committee) of Institut Pasteur, (2) the National Ethics Committee of the four countries, and (3) the CCTIRS (Comité Consultatif sur le Traitement de l’Information en matière de Recherche dans le domaine de la santé) and the CNIL (Commission Nationale de l’Information et des Libertés) in France. Written informed consent will be obtained from all children’s parents or legal guardians for both MAM and well-nourished children. The project will provide treatment and laboratory testing free of charge. An international insurance contract is already granted to cover all specific risk of the trial.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests. The funders had no role in the design of the protocol.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Timetable of the follow up of the children

References

    1. Anuradha R, Munisankar S, Bhootra Y, Kumar NP, Dolla C, Kumaran P, Babu S. Coexistent malnutrition is associated with perturbations in systemic and antigen-specific cytokine responses in latent tuberculosis infection. Clin Vaccine Immunol. 2016;23:339–345. doi: 10.1128/CVI.00009-16.
    1. Crane RJ, Jones KDJ, Berkley JA. Environmental enteric dysfunction an overview. CMAM FORUM Technical Brief. 2014.
    1. Gaayeb L, Pinçon C, Cames C, Sarr JB, Seck M, Schacht AM, Remoué F, Hermann E, Riveau G. Immune response to Bordetella pertussis is associated with season and undernutrition in Senegalese children. Vaccine. 2014;32:3431–3437. doi: 10.1016/j.vaccine.2014.03.086.
    1. Anonymous . Enquête nationale sur le suivi des indicateurs des objectifs du Millénaire pour le développement durable 2012-2013. Madagascar: INSTAT; 2014.
    1. Briend A, Prinzo ZW. Dietary management of moderate malnutrition: time for a change. Food Nutr Bull. 2009;30:S265–S266. doi: 10.1177/15648265090303S301.
    1. Lazzerini M, Rubert L, Pani P. Specially formulated foods for treating children with moderate acute malnutrition in low- and middle-income countries. Cochrane Database Syst Rev. 2013;6:CD009584. doi: 10.1002/14651858.CD009584.pub2.
    1. Lenters LM, Wazny K, Webb P, Ahmed T, Bhutta ZA. Treatment of severe and moderate acute malnutrition in low- and middle-income settings: a systematic review, meta-analysis and Delphi process. BMC Public Health. 2013;13:S23. doi: 10.1186/1471-2458-13-S3-S23.
    1. Navarro-colorado C, Mason F, Shoham J. Network paper measuring the effectiveness of supplementary feeding programmes in emergencies. Humanit Pract Netw. 2008;44.
    1. WHO. World Health Statistics. Geneva; 2017. . Accessed Nov 2018.
    1. UNICEF Data March 2018. . Accessed Nov 2018.
    1. The Hao Chung, Florez de Sessions Paola, Jie Song, Pham Thanh Duy, Thompson Corinne N., Nguyen Ngoc Minh Chau, Chu Collins Wenhan, Tran Tuan-Anh, Thomson Nicholas R., Thwaites Guy E., Rabaa Maia A., Hibberd Martin, Baker Stephen. Assessing gut microbiota perturbations during the early phase of infectious diarrhea in Vietnamese children. Gut Microbes. 2017;9(1):38–54. doi: 10.1080/19490976.2017.1361093.
    1. Prendergast AJ, Kelly P. Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. Curr Opin Infect Dis. 2016;29:229–236. doi: 10.1097/QCO.0000000000000261.
    1. Stiemsma LT, Michels KB. The role of the microbiome in the developmental origins of health and disease. Pediatrics. 2018;141:e20172437. doi: 10.1542/peds.2017-2437.
    1. Laursen MF, Bahl MI, Michaelsen KF, Licht TR. First foods and gut microbes. Front Microbiol. 2017;8:356. doi: 10.3389/fmicb.2017.00356.
    1. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Grześkowiak Ł, Collado MC, Mangani C, Maleta K, Laitinen K, Ashorn P. Distinct gut microbiota in Southeastern African and Northern European infants. J Pediatr Gastroenterol Nutr. 2012;54:812–816. doi: 10.1097/MPG.0b013e318249039c.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. Ghosh TS, Gupta SS, Bhattacharya T, Yadav D, Barik A, Chowdhury A, et al. Gut microbiomes of Indian children of varying nutritional status. PLoS One. 2014;9:e95547. doi: 10.1371/journal.pone.0095547.
    1. Kane AV, Dinh DM, Ward HD. Childhood malnutrition and the intestinal microbiome. Pediatr Res. 2015;77:256–262. doi: 10.1038/pr.2014.179.
    1. Million M, Tidjani Alou M, Khelaifia S, Bachar D, Lagier JC, Dione N, et al. Increased gut redox and depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep. 2016;6:26051. doi: 10.1038/srep26051.
    1. Monira S, Nakamura S, Gotoh K, Izutsu K, Watanabe H, Alam NH, et al. Gut microbiota of healthy and malnourished children in Bangladesh. Front Microbiol. 2011;2:228. doi: 10.3389/fmicb.2011.00228.
    1. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science. 2013;339:548–554. doi: 10.1126/science.1229000.
    1. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam M, et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature. 2014;510:417–421. doi: 10.1038/nature13421.
    1. Velly H, Britton RA, Preidis GA. Mechanisms of cross-talk between the diet, the intestinal microbiome, and the undernourished host. Gut Microbes. 2017;8:98–112. doi: 10.1080/19490976.2016.1267888.
    1. Jain N, Walker WA. Diet and host-microbial crosstalk in postnatal intestinal immune homeostasis. Nat Rev Gastroenterol Hepatol. 2015;12:14–25. doi: 10.1038/nrgastro.2014.153.
    1. Silva Marcelo José Barbosa, Carneiro Matheus Batista Heitor, dos Anjos Pultz Brunna, Pereira Silva Danielle, Lopes Mateus Eustáquio de Moura, dos Santos Liliane Martins. The Multifaceted Role of Commensal Microbiota in Homeostasis and Gastrointestinal Diseases. Journal of Immunology Research. 2015;2015:1–14.
    1. Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology. 2014;146:1547–1553. doi: 10.1053/j.gastro.2014.01.059.
    1. Stecher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiol Spectr. 2015;3(3). 10.1128/microbiolspec.MBP-0008-2014.
    1. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology. 2014;146:1489–1499. doi: 10.1053/j.gastro.2014.02.009.
    1. Manichanh C, Borruel N, Casellas F, Guarner F. The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol. 2012;9:599–608. doi: 10.1038/nrgastro.2012.152.
    1. Marasco Giovanni, Di Biase Anna Rita, Schiumerini Ramona, Eusebi Leonardo Henry, Iughetti Lorenzo, Ravaioli Federico, Scaioli Eleonora, Colecchia Antonio, Festi Davide. Gut Microbiota and Celiac Disease. Digestive Diseases and Sciences. 2016;61(6):1461–1472. doi: 10.1007/s10620-015-4020-2.
    1. Bohm M, Siwiec RM, Wo JM. Diagnosis and management of small intestinal bacterial overgrowth. Nutr Clin Pract. 2013;28:289–299. doi: 10.1177/0884533613485882.
    1. Hughes PA, Zola H, Penttila IA, Blackshaw LA, Andrews JM, Krumbiegel D. Immune activation in irritable bowel syndrome: can neuroimmune interactions explain symptoms? Am J Gastroenterol. 2013;108:1066–1074. doi: 10.1038/ajg.2013.120.
    1. Di Mauro A, Neu J, Riezzo G, Raimondi F, Martinelli D, Francavilla R, Indrio F. Gastrointestinal function development and microbiota. Ital J Pediatr. 2013;24:15. doi: 10.1186/1824-7288-39-15.
    1. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–236. doi: 10.1038/nature12331.
    1. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–812. doi: 10.1038/nrc3610.
    1. Stringer AM, Al-Dasooqi N, Bowen JM, Tan TH, Radzuan M, Logan RM, Mayo B, Keefe DM, Gibson RJ. Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases. Support Care Cancer. 2013;21:1843–1852. doi: 10.1007/s00520-013-1741-7.
    1. Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11:639–647. doi: 10.1038/nrmicro3089.
    1. Khan MT, Nieuwdorp M, Bäckhed F. Microbial modulation of insulin sensitivity. Cell Metab. 2014;20:753–760. doi: 10.1016/j.cmet.2014.07.006.
    1. Dinh DM, Ramadass B, Kattula D, Sarkar R, Braunstein P, Tai A, et al. Longitudinal analysis of the intestinal microbiota in persistently stunted young children in South India. PLoS One. 2016;11:e0155405. doi: 10.1371/journal.pone.0155405.
    1. Bartelt LA, Bolick DT, Mayneris-Perxachs J, Kolling GL, Medlock GL, Zaenker EI, et al. Cross-modulation of pathogen-specific pathways enhances malnutrition during enteric co-infection with Giardia lamblia and enteroaggregative Escherichia coli. PLoS Pathog. 2017;13:e1006471. doi: 10.1371/journal.ppat.1006471.
    1. Moloney Rachel D., Desbonnet Lieve, Clarke Gerard, Dinan Timothy G., Cryan John F. The microbiome: stress, health and disease. Mammalian Genome. 2013;25(1-2):49–74. doi: 10.1007/s00335-013-9488-5.
    1. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013;9:11. doi: 10.1371/journal.ppat.1003726.
    1. Qureshi IA, Mehler MF. Towards a “systems”-level understanding of the nervous system and its disorders. Trends Neurosci. 2013;36:674–684. doi: 10.1016/j.tins.2013.07.003.
    1. Collins SM, Kassam Z, Bercik P. The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol. 2013;16:240–245. doi: 10.1016/j.mib.2013.06.004.
    1. Hornig M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol. 2013;25:488–795. doi: 10.1097/BOR.0b013e32836208de.
    1. Christie CD, Heikens GT, McFarlane DE. Nosocomial and community-acquired infections in malnourished children. J Trop Med Hyg. 1988;91:173–180.
    1. Macdougall LG. The effect of aureomycin in undernourished African children. J Trop Pediatr. 1957;3:74–81. doi: 10.1093/oxfordjournals.tropej.a057461.
    1. Trehan I, Shulman RJ, Ou CN, Maleta K, Manary MJ. A randomized, double-blind, placebo-controlled trial of rifaximin, a nonabsorbable antibiotic, in the treatment of tropical enteropathy. Am J Gastroenterol. 2009;104:2326–2333. doi: 10.1038/ajg.2009.270.
    1. Trehan I, Goldbach HS, LaGrone LN, Meuli GJ, Wang RJ, Maleta KM, Manary MJ. Antibiotics as part of the management of severe acute malnutrition. N Engl J Med. 2013;368:425–435. doi: 10.1056/NEJMoa1202851.
    1. Isanaka S, Langendorf C, Berthé F, Gnegne S, Li N, Ousmane N, Harouna S, Hassane H, Schaefer M, Adehossi E, Grais RF. Routine amoxicillin for uncomplicated severe acute malnutrition in children. N Engl J Med. 2016;374:444–453. doi: 10.1056/NEJMoa1507024.
    1. Berkley JA, Ngari M, Thitiri J, Mwalekwa L, Timbwa M, Hamid F, Ali R, Shangala J, Mturi N, Jones KDJ, Alphan H, Mutai B, Bandika V, Hemed T, Awuondo K, Morpeth S, Kariuki S, Fegan G. Daily co-trimoxazole prophylaxis to prevent mortality in children with complicated severe acute malnutrition: a multicentre, double-blind, randomised placebo-controlled trial. Lancet Glob Health. 2016;4:e464–e473. doi: 10.1016/S2214-109X(16)30096-1.
    1. Lazzerini M, Tickell D. Antibiotics in severely malnourished children: systematic review of efficacy, safety and pharmacokinetics. Bull World Health Organ. 2011;89(8):594–607. doi: 10.2471/BLT.10.084715.
    1. Shirajum M, Shota N, Kazuyoshi G, Kaori I, Watanabe H, Alam NH, Nakaya T, Horii T, Ali SI, Iida T, Alam M. Metagenomic profile of gut microbiota in children during cholera and recovery. Gut Pathogens. 2013;5:1. doi: 10.1186/1757-4749-5-1.
    1. Isanaka S, Adehoss E, Grais RF. Amoxicillin for severe acute malnutrition in children. N Engl J Med. 2016;375:191–192. doi: 10.1056/NEJMc1605388.
    1. Million Matthieu, Lagier Jean-Christophe, Raoult Didier. Meta-analysis on efficacy of amoxicillin in uncomplicated severe acute malnutrition. Microbial Pathogenesis. 2017;106:76–77. doi: 10.1016/j.micpath.2016.06.025.
    1. Okeke IN, Cruz JR, Keusch GT, and Alliance for the Prudent Use of Antibiotics–Nutrition Group Antibiotics for uncomplicated severe malnutrition. N Engl J Med. 2013;368:2435–2436. doi: 10.1056/NEJMc1304407#SA2.
    1. Rawson TM, Moore LS, Holmes AH. Amoxicillin for severe acute malnutrition in children. N Engl J Med. 2016;375:190–191. doi: 10.1056/NEJMc1605388#SA1.
    1. Trehan I, Schechtman KB, Manary MJ. Amoxicillin for severe acute malnutrition in children. N Engl J Med. 2016;375:191. doi: 10.1056/NEJMc1605388#SA2.
    1. Williams PC, Berkley JA. Severe acute malnutrition update: current WHO guidelines and WHO essential medicine list for children. 2016.
    1. Drissi F, Buffet S, Raoult D, Merhej V. Common occurrence of antibacterial agents in human intestinal microbiota. Front Microbiol. 2015;6:441. doi: 10.3389/fmicb.2015.00441.
    1. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016;8:39. doi: 10.1186/s13073-016-0294-z.
    1. Luntamo M, Kulmala T, Cheung YB, Maleta K, Ashorn P. The effect of antenatal monthly sulphadoxine-pyrimethamine, alone or with azithromycin, on foetal and neonatal growth faltering in Malawi: a randomised controlled trial. Trop Med Int Health. 2013;18:386–397. doi: 10.1111/tmi.12074.
    1. Keenan JD, Bailey RL, West SK, Arzika AM, Hart J, Weaver J, Kalua K, Mrango Z, Ray KJ, Cook C, Lebas E, O’Brien KS, Emerson PM, Porco NZ, and Lietman TM for the MORDOR Study Group Azithromycin to reduce childhood mortality in Sub-Saharan Africa. N Engl J Med. 2018;378:1583–1592. doi: 10.1056/NEJMoa1715474.
    1. Bisanz JE, Enos MK, PrayGod G. Microbiota at multiple body sites during pregnancy in a rural Tanzanian population and effects of moringa-supplemented probiotic yogurt. Appl Environ Microbiol. 2015;81:4965–4975. doi: 10.1128/AEM.00780-15.
    1. Charbonneau MR, O’Donnell D, Blanton LV. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell. 2016;164:859–871. doi: 10.1016/j.cell.2016.01.024.
    1. Blanton LV, Barratt MJ, Charbonneau MR, Ahmed T, Gordon JI. Childhood undernutrition, the gut microbiota, and microbiota-directed therapeutics. Science. 2016;352:1533. doi: 10.1126/science.aad9359.
    1. Angelakis E, Merhej V, Raoult D. Related actions of probiotics and antibiotics on gut microbiota and weight modification. Lancet Inf Dis. 2013;13:889–899. doi: 10.1016/S1473-3099(13)70179-8.
    1. Kerac M, Bunn J, Seal A, Thindwa M, Tomkins A, Sadler K, Bahwere P, Collins S. Probiotics and prebiotics for severe acute malnutrition (PRONUT study): a double-blind efficacy randomised controlled trial in Malawi. Lancet. 2009;374:136–144. doi: 10.1016/S0140-6736(09)60884-9.
    1. Slattery DF, MacFabe F, Frye RE. The Significance of the enteric microbiome on the development of childhood disease: a review of prebiotic and probiotic therapies in disorders of childhood. Clin Med Ins Ped. 2016;10:91–107.
    1. Firmansyah A, Chongviriyaphan N, Dillon DHS, Khan NC, Morita T, Tontisirin K, Tuyen L, Wang W, Bindels J, Deurenberg P, Ong S, Hautvast J, Meyer D, Vaughan EE. Fructans in the first 1000 days of life and beyond, and for pregnancy. Asia Pac J Clin Nutr. 2016;25:652–675.
    1. Franco-Robles E, López MG. Implication of fructans in health: immunomodulatory and antioxidant mechanisms. Sci World J. 2015:289267.
    1. Kolida S, Tuohy K, Gibson GR. Prebiotic effects of inulin and oligofructose. Br J Nutr. 2002;87(Suppl 2):S193–S197. doi: 10.1079/BJNBJN/2002537.
    1. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects : metabolic and health benefits. CentAUR. 2010;104:S1–63. doi: 10.1017/S0007114510003363.
    1. Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PGB, Neyrinck AM, et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut. 2013;62:1112–1121. doi: 10.1136/gutjnl-2012-303304.
    1. Piemontese P, Giannı ML, Braegger CP, Chirico G, Gruber C. Tolerance and safety evaluation in a large cohort of healthy infants fed an innovative prebiotic formula: a randomized controlled trial. PLoS ONE. 2011;6:e28010. doi: 10.1371/journal.pone.0028010.
    1. Gibson GR, Beatty ER, Wang X, Cummings JH. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology. 1995;108:975–982. doi: 10.1016/0016-5085(95)90192-2.
    1. Meyer D, Stasse-Wolthuis M. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur J Clin Nutr. 2009;63:1277–1289. doi: 10.1038/ejcn.2009.64.
    1. Ramirez-Farias C, Slezak K, Fuller Z, Duncan A, Holtrop G, Louis P. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. Br J Nutr. 2009;101:541–550. doi: 10.1017/S0007114508019880.
    1. Chung WSF, Walker AW, Louis P, Parkhil J, Vermeiren J, Bosscher D, et al. Modulation of the human gut microbiota by dietary fibres occurs at the species level. BMC Biol. 2016;14:3. doi: 10.1186/s12915-015-0224-3.
    1. Jung TH, Jeon WM, Han KS. In vitro effects of dietary inulin on human fecal microbiota and butyrate production. J Microbiol Biotechnol. 2015;25:1555–1558. doi: 10.4014/jmb.1505.05078.
    1. Orel R, Kamhi Trop T. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease. World J Gastroenterol. 2014;20:11505–11524. doi: 10.3748/wjg.v20.i33.11505.
    1. Steed H, Macfarlane GT, Blackett KL, Bahrami B, Reynolds N, Walsh SV, Cummings JH, Macfarlane S. Clinical trial: the microbiological and immunological effects of symbiotic consumption - a randomized double-blind placebo-controlled study in active Crohn’s disease. Aliment Pharmacol Ther. 2010;32:872–883. doi: 10.1111/j.1365-2036.2010.04417.x.
    1. Anonymous . Key outcomes of the Technical Meeting on Environmental Enteric Dysfunction, the Microbiome Undernutrition. Vienna: IAEA; 2015.
    1. Anonymous. World Gastroenterology Organisation. Practical recommandations: Probiotiques et Prébiotiques. Mai 2008
    1. Rivera-Huerta M, Lizárraga-Grimes VL, Castro-Torres IG, Tinoco-Méndez M, Macías-Rosales L, Sánchez-Bartéz F, Tapia-Pérez GG, Romero-Romero L, Gracia-Mora MI. Functional effects of prebiotic fructans in colon cancer and calcium metabolism in animal models. Biomed Res Int. 2017;2017:975–982. doi: 10.1155/2017/9758982.
    1. Roberfroid MB. Inulin-type fructans: functional food ingredients. J Nutr. 2007;137:2493S–2502S. doi: 10.1093/jn/137.11.2493S.
    1. Dehghan P, Farhangi MA, Tavakoli F, Aliasgarzadeh A, Akbari AM. Impact of prebiotic supplementation on T-cell subsets and their related cytokines, anthropometric features and blood pressure in patients with type 2 diabetes mellitus: a randomized placebo-controlled Trial. Complement Ther Med. 2016;24:96–102. doi: 10.1016/j.ctim.2015.12.010.
    1. Liu J, Hanlon A, Ma C, Zhao SR, Cao S, Compher C. Low blood zinc, iron, and other sociodemographic factors associated with behavior problems in preschoolers. Nutrients. 2014;6:530–545. doi: 10.3390/nu6020530.
    1. Sandjaja, Poh BK, Rojroonwasinkul N, Le Nyugen BK, Budiman B, Ng LO, Soonthorndhada K, Xuyen HT, Deurenberg P, Parikh P, SEANUTS Study Group Relationship between anthropometric indicators and cognitive performance in Southeast Asian school-aged children. Br J Nutr. 2013;110:S57–S64. doi: 10.1017/S0007114513002079..
    1. Goyala MS, Venkateshb S, Milbrandt J, Gordon JI, Raichl ME. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. PNAS. 2015;112:14105–14112. doi: 10.1073/pnas.1511465112.
    1. Madore C, Leyrolle Q, Lacabanne C, Benmamar-Badel A, Joffre C, Nadjar A, Layé S. Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota. Neural Plasticity. 2016;3597209:15.
    1. Bhoite RM, Iyer UM. Effect of deworming vs Iron-Folic acid supplementation plus deworming on growth, hemoglobin level, and physical work capacity of schoolchildren. Indian Pediatr. 2012;49:659–661. doi: 10.1007/s13312-012-0129-y.
    1. Marchand V. Using probiotics in the paediatric population. Paediatr Child Health. 2012;17:575–576. doi: 10.1093/pch/17.10.575.
    1. Versalovic J. The human microbiome and probiotics: implications for pediatrics. Ann Nutr Metab. 2013;63(Suppl 2):42–52. doi: 10.1159/000354899.
    1. Bested AC, Logan AC, Selhub EM. Intestinal microbiota, probiotics and mental health: from Metchnikoff to modern advances: part III—convergence toward clinical trials. Gut Pathog. 2013;16:4. doi: 10.1186/1757-4749-5-4.
    1. Davari S, Talaei SA, Alaei H, Salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience. 2013;14:287–296. doi: 10.1016/j.neuroscience.2013.02.055.
    1. Akombi BJ, Agho KE, Merom D, Renzaho AM, Hall JJ. Child malnutrition in sub-Saharan Africa: a meta-analysis of demographic and health surveys (2006-2016) PLoS One. 2017;12:e0177338. doi: 10.1371/journal.pone.0177338.
    1. Wuehler SE, Biga Hassoumi A. Situational analysis of infant and young child nutrition policies and programmatic activities in Niger. Matern Child Nutr. 2011;7:133–156. doi: 10.1111/j.1740-8709.2010.00307.x.
    1. Kouassi F. Study on the underlying causes for under-nutrition, Department of Mayahi, Region of Maradi, November 2016 to March 2017. Link Unit NCA, Action Against Hunger, May 2017. .
    1. Anonymous. Evaluation de la situation nutritionnelle par la méthodologie SMART au Niger. Institut National de la Statistique. Rapport final, novembre 2016.
    1. Anonymous. Enquête Démographique et de Santé à Indicateurs Multiples 2010-2011. Agence Nationale de la Statistique et de la Démographie du Sénégal. Ministère de la Santé Publique, Dakar 2012.
    1. Caleo GM, Sy AP, Balandine S, Polonsky J, Palma PP, Grais RF, Checchi F. Sentinel site community surveillance of mortality and nutritional status in southwestern Central African Republic, 2010. Popul Health Metr. 2012;10:18. doi: 10.1186/1478-7954-10-18.
    1. Breurec S, Vanel N, Bata P, Chartier L, Farra A, Favennec L, Vray M. Etiology and epidemiology of diarrhea in hospitalized children from low income country: a matched case-control study in Central African Republic. PLoS Negl Trop Dis. 2016;10:e0004283. doi: 10.1371/journal.pntd.0004283.
    1. Enenkel M, See L, Karner M, Alvarez M, Rogenhofer E, Baraldes-Vallverdu C, Lanusse C, Salse N. Food security monitoring via mobile data collection and remote sensing: results from the Central African Republic. PLoS One. 2015;10:e0142030. doi: 10.1371/journal.pone.0142030.
    1. Wakabi W. Health crisis worsens in Central African Republic. Lancet. 2006;367:1969–1970. doi: 10.1016/S0140-6736(06)68865-X.
    1. Golden M. Proposed recommended nutrient densities for moderately malnourished children. Food Nutr Bull. 2009;30:S267–S342. doi: 10.1177/15648265090303S302.
    1. Wilson B, Whelan K. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. J Gastroenterol Hepatol. 2017;32:64–68. doi: 10.1111/jgh.13700.
    1. Healey G, Murphy R, Butts C, Brough L, Whelan K, Coad J. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. Br J Nutr. 2018;119:176–189. doi: 10.1017/S0007114517003440.

Source: PubMed

3
S'abonner