Curcumin as a potent and selective inhibitor of 11β-hydroxysteroid dehydrogenase 1: improving lipid profiles in high-fat-diet-treated rats

Guo-Xin Hu, Han Lin, Qing-Quan Lian, Shu-Hua Zhou, Jingjing Guo, Hong-Yu Zhou, Yanhui Chu, Ren-Shan Ge, Guo-Xin Hu, Han Lin, Qing-Quan Lian, Shu-Hua Zhou, Jingjing Guo, Hong-Yu Zhou, Yanhui Chu, Ren-Shan Ge

Abstract

Background: 11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) activates glucocorticoid locally in liver and fat tissues to aggravate metabolic syndrome. 11β-HSD1 selective inhibitor can be used to treat metabolic syndrome. Curcumin and its derivatives as selective inhibitors of 11β-HSD1 have not been reported.

Methodology: Curcumin and its 12 derivatives were tested for their potencies of inhibitory effects on human and rat 11β-HSD1 with selectivity against 11β-HSD2. 200 mg/kg curcumin was gavaged to adult male Sprague-Dawley rats with high-fat-diet-induced metabolic syndrome for 2 months.

Results and conclusions: Curcumin exhibited inhibitory potency against human and rat 11β-HSD1 in intact cells with IC50 values of 2.29 and 5.79 µM, respectively, with selectivity against 11β-HSD2 (IC50, 14.56 and 11.92 µM). Curcumin was a competitive inhibitor of human and rat 11β-HSD1. Curcumin reduced serum glucose, cholesterol, triglyceride, low density lipoprotein levels in high-fat-diet-induced obese rats. Four curcumin derivatives had much higher potencies for Inhibition of 11β-HSD1. One of them is (1E,4E)-1,5-bis(thiophen-2-yl) penta-1,4-dien-3-one (compound 6), which had IC50 values of 93 and 184 nM for human and rat 11β-HSD1, respectively. Compound 6 did not inhibit human and rat kidney 11β-HSD2 at 100 µM. In conclusion, curcumin is effective for the treatment of metabolic syndrome and four novel curcumin derivatives had high potencies for inhibition of human 11β-HSD1 with selectivity against 11β-HSD2.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Interconversion of cortisol and cortisone…
Figure 1. Interconversion of cortisol and cortisone by two 11β-hydroxysteroid dehydrogenase (11β-HSD) isoforms.
11β-HSD1 catalyzes the conversion of cortisone into cortisol in the liver or fat tissues, and 11β-HSD2 catalyzes the conversion of cortisol into cortisone in kidney or colon tissues.
Figure 2. Structures of curcumin and its…
Figure 2. Structures of curcumin and its pentadienone analogues.
Ar = aryl group; n = carbon numbers, where n = 0, designating open chain pentadienone compound, and n = 2, 3 designating cyclopentadienone compound.
Figure 3. Dose-dependent inhibition on 11β-HSD1 in…
Figure 3. Dose-dependent inhibition on 11β-HSD1 in intact rat Leydig cells by curcumin (compound 1) and it derivatives.
Figure 4. Lineweaver–Burk plot of rat liver…
Figure 4. Lineweaver–Burk plot of rat liver microsomal 11β-HSD1 in the presence of compound 6.
1/V versus 1/[11DHC], V, velocity (pmol/mg protein⋅min); [11DHC], concentrations of 11DHC.
Figure 5. Serum glucose, total cholesterol, Tg,…
Figure 5. Serum glucose, total cholesterol, Tg, LDL, APOA1 and APOB in rats from normal diet control (CON), HFD diet (HFD) and HFD plus curcumin (CUR).
Male rats were administered with 200 mg/kg curcumin for 2 months. Mean ± SE, n = 10. Identical letter designates no significant difference between two groups at P

References

    1. Gass P, Reichardt HM, Strekalova T, Henn F, Tronche F (2001) Mice with targeted mutations of glucocorticoid and mineralocorticoid receptors: models for depression and anxiety? Physiol Behav 73: 811–825.
    1. Andrews RC, Walker BR (1999) Glucocorticoids and insulin resistance: old hormones, new targets. Clin Sci (Lond) 96: 513–523.
    1. Masuzaki H, Paterson J, Shinyama H, Morton NM, Mullins JJ, et al. (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294: 2166–2170.
    1. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, et al. (2004) 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 25: 831–866.
    1. White PC, Mune T, Agarwal AK (1997) 11 beta-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev 18: 135–156.
    1. Ge R, Huang Y, Liang G, Li X (2009) 11beta-Hydroxysteroid Dehydrogenase Type 1 Inhibitors as Promising Therapeutic Drugs for Diabetes: Status and Development. Curr Med Chem
    1. Morton NM, Holmes MC, Fievet C, Staels B, Tailleux A, et al. (2001) Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11beta-hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem 276: 41293–41300.
    1. Lakshmi V, Monder C (1985) Extraction of 11 beta-hydroxysteroid dehydrogenase from rat liver microsomes by detergents. J Steroid Biochem 22: 331–340.
    1. Liang G, Li X, Chen L, Yang S, Wu X, et al. (2008) Synthesis and anti-inflammatory activities of mono-carbonyl analogues of curcumin. Bioorg Med Chem Lett 18: 1525–1529.
    1. Liang G, Zhou H, Wang Y, Gurley EC, Feng B, et al. (2009) Inhibition of LPS-induced Production of Inflammatory Factors in the Macrophages by Mono-carbonyl Analogues of Curcumin. J Cell Mol Med
    1. Ge RS, Gao HB, Nacharaju VL, Gunsalus GL, Hardy MP (1997) Identification of a kinetically distinct activity of 11beta-hydroxysteroid dehydrogenase in rat Leydig cells. Endocrinology 138: 2435–2442.
    1. Monder C, Hardy MP, Blanchard RJ, Blanchard DC (1994) Comparative aspects of 11 beta-hydroxysteroid dehydrogenase. Testicular 11 beta-hydroxysteroid dehydrogenase: development of a model for the mediation of Leydig cell function by corticosteroids. Steroids 59: 69–73.
    1. Salva A, Klinefelter GR, Hardy MP (2001) Purification of rat leydig cells: increased yields after unit-gravity sedimentation of collagenase-dispersed interstitial cells. J Androl 22: 665–671.
    1. Payne AH, Downing JR, Wong KL (1980) Luteinizing hormone receptor and testosterone synthesis in two distinct populations of Leydig cells. Endocrinology 106: 1424–1429.
    1. Tannin GM, Agarwal AK, Monder C, New MI, White PC (1991) The human gene for 11 beta-hydroxysteroid dehydrogenase. Structure, tissue distribution, and chromosomal localization. J Biol Chem 266: 16653–16658.
    1. Ge RS, Hardy MP (2000) Initial predominance of the oxidative activity of type I 11beta-hydroxysteroid dehydrogenase in primary rat Leydig cells and transfected cell lines. J Androl 21: 303–310.
    1. Chen BB, Lin H, Hu GX, Su Y, Zhou HY, et al. (2009) The (+)- and (−)-gossypols potently inhibit human and rat 11beta-hydroxysteroid dehydrogenase type 2. J Steroid Biochem Mol Biol 113: 177–181.
    1. Zhao B, Chu Y, Huang Y, Hardy DO, Lin S, et al. (2010) Structure-dependent inhibition of human and rat 11beta-hydroxysteroid dehydrogenase 2 activities by phthalates. Chem Biol Interact 183: 79–84.
    1. Monder C, Lakshmi V (1988) Corticosteroid 11 beta-hydroxysteroid dehydrogenase activities in vertebrate liver. Steroids 52: 515–528.
    1. Livingstone DE, Kenyon CJ, Walker BR (2000) Mechanisms of dysregulation of 11 beta-hydroxysteroid dehydrogenase type 1 in obese Zucker rats. J Endocrinol 167: 533–539.
    1. Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, et al. (2008) AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB J 22: 1672–1683.
    1. Wake DJ, Walker BR (2004) 11 beta-hydroxysteroid dehydrogenase type 1 in obesity and the metabolic syndrome. Mol Cell Endocrinol 215: 45–54.
    1. Paterson JM, Morton NM, Fievet C, Kenyon CJ, Holmes MC, et al. (2004) Metabolic syndrome without obesity: Hepatic overexpression of 11beta-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proc Natl Acad Sci U S A 101: 7088–7093.
    1. Kershaw EE, Morton NM, Dhillon H, Ramage L, Seckl JR, et al. (2005) Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes 54: 1023–1031.
    1. Morton NM, Paterson JM, Masuzaki H, Holmes MC, Staels B, et al. (2004) Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11 beta-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes 53: 931–938.
    1. Baudrand R, Dominguez JM, Carvajal CA, Riquelme A, Campino C, et al. Overexpression of hepatic 5alpha-reductase and 11beta-hydroxysteroid dehydrogenase type 1 in visceral adipose tissue is associated with hyperinsulinemia in morbidly obese patients. Metabolism 60: 1775–1780.
    1. Munoz R, Carvajal C, Escalona A, Boza C, Perez G, et al. (2009) 11beta-hydroxysteroid dehydrogenase type 1 is overexpressed in subcutaneous adipose tissue of morbidly obese patients. Obes Surg 19: 764–770.
    1. Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57: 1–7.
    1. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, et al. (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21: 2895–2900.
    1. Rao DS, Sekhara NC, Satyanarayana MN, Srinivasan M (1970) Effect of curcumin on serum and liver cholesterol levels in the rat. J Nutr 100: 1307–1315.
    1. Patil TN, Srinivasan M (1971) Hypocholesteremic effect of curcumin in induced hypercholesteremic rats. Indian J Exp Biol 9: 167–169.
    1. Babu PS, Srinivasan K (1997) Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats. Mol Cell Biochem 166: 169–175.
    1. Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, et al. (2008) Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res 52: 995–1004.
    1. Nishiyama T, Mae T, Kishida H, Tsukagawa M, Mimaki Y, et al. (2005) Curcuminoids and sesquiterpenoids in turmeric (Curcuma longa L.) suppress an increase in blood glucose level in type 2 diabetic KK-Ay mice. J Agric Food Chem 53: 959–963.
    1. Kempaiah RK, Srinivasan K (2004) Influence of dietary curcumin, capsaicin and garlic on the antioxidant status of red blood cells and the liver in high-fat-fed rats. Ann Nutr Metab 48: 314–320.
    1. Chiu J, Khan ZA, Farhangkhoee H, Chakrabarti S (2009) Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition 25: 964–972.
    1. Stewart PM, Tomlinson JW (2009) Selective inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 for patients with metabolic syndrome: is the target liver, fat, or both? Diabetes 58: 14–15.
    1. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, et al. (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7: 1894–1900.
    1. Barf T, Vallgarda J, Emond R, Haggstrom C, Kurz G, et al. (2002) Arylsulfonamidothiazoles as a new class of potential antidiabetic drugs. Discovery of potent and selective inhibitors of the 11beta-hydroxysteroid dehydrogenase type 1. J Med Chem 45: 3813–3815.
    1. Hermanowski-Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, et al. (2005) 11beta-HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 202: 517–527.

Source: PubMed

3
S'abonner