[18F]Fluciclovine PET discrimination between high- and low-grade gliomas

Ephraim E Parent, Marc Benayoun, Ijeoma Ibeanu, Jeffrey J Olson, Constantinos G Hadjipanayis, Daniel J Brat, Vikram Adhikarla, Jonathon Nye, David M Schuster, Mark M Goodman, Ephraim E Parent, Marc Benayoun, Ijeoma Ibeanu, Jeffrey J Olson, Constantinos G Hadjipanayis, Daniel J Brat, Vikram Adhikarla, Jonathon Nye, David M Schuster, Mark M Goodman

Abstract

Background: The ability to accurately and non-invasively distinguish high-grade glioma from low-grade glioma remains a challenge despite advances in molecular and magnetic resonance imaging. We investigated the ability of fluciclovine (18F) PET as a means to identify and distinguish these lesions in patients with known gliomas and to correlate uptake with Ki-67.

Results: Sixteen patients with a total of 18 newly diagnosed low-grade gliomas (n = 6) and high grade gliomas (n = 12) underwent fluciclovine PET imaging after histopathologic assessment. Fluciclovine PET analysis comprised tumor SUVmax and SUVmean, as well as metabolic tumor thresholds (1.3*, 1.6*, 1.9*) to normal brain background (TBmax, and TBmean). Comparison was additionally made to the proliferative status of the tumor as indicated by Ki-67 values. Fluciclovine uptake greater than normal brain parenchyma was found in all lesions studied. Time activity curves demonstrated statistically apparent flattening of the curves for both high-grade gliomas and low-grade gliomas starting 30 min after injection, suggesting an influx/efflux equilibrium. The best semiquantitative metric in discriminating HGG from LGG was obtained utilizing a metabolic 1 tumor threshold of 1.3* contralateral normal brain parenchyma uptake to create a tumor: background (TBmean1.3) cutoff of 2.15 with an overall sensitivity of 97.5% and specificity of 95.5%. Additionally, using a SUVmax > 4.3 cutoff gave a sensitivity of 90.9% and specificity of 97.5%. Tumor SUVmean and tumor SUVmax as a ratio to mean normal contralateral brain were both found to be less relevant predictors of tumor grade. Both SUVmax (R = 0.71, p = 0.0227) and TBmean (TBmean1.3: R = 0.81, p = 0.00081) had a high correlation with the tumor proliferative index Ki-67.

Conclusions: Fluciclovine PET produces high-contrast images between both low-grade and high grade gliomas and normal brain by visual and semiquantitative analysis. Fluciclovine PET appears to discriminate between low-grade glioma and high-grade glioma, but must be validated with a larger sample size.

Keywords: 18F-fluciclovine; Amino acid; Glioma; PET.

Conflict of interest statement

Ethics approval and consent to participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The recruitment protocol was approved by the Institutional Review Board (IRB) and complied with the Health Insurance Portability and Accountability Act (HIPPA). Informed consent was obtained from all individual participants included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors have participated in sponsored research involving 18F-fluciclovine, among other radiotracers. Emory University and Dr. Mark Goodman are eligible to receive royalties for 18F-fluciclovine. The other authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Fluciclovine PET at 30 min post-injection of oligodendroglioma with regions overlaid on MRI. Green sphere is the area of normal brain fluciclovine uptake. Magenta area is the metabolic tumor uptake defined as 1.3* contralateral normal brain uptake (TBmean1.3)
Fig. 2
Fig. 2
Fluciclovine PET at 30 min post-injection of glioblastoma fused with regions overlaid on MRI. Green sphere is the area of normal brain fluciclovine uptake. Magenta area is the metabolic tumor uptake defined as 1.3* contralateral normal brain uptake (TBmean1.3)
Fig. 3
Fig. 3
Time activity curves of HGG (red) and LGG SUVmax (blue) show equilibrium kinetics starting 30 min post-injection. Statistically significant differences are noted between HGG and LGG, normal brain parenchyma SUVmean (green), and venous blood pool SUVmean (purple). Each lesion was compared to the contralateral normal
Fig. 4
Fig. 4
Time activity curves using TBmean for HGG (red) and LGG (blue) with a threshold of 1.3 × SUVmean normal brain parenchyma, b 1.6 × SUVmean normal brain parenchyma, c 1.9 × SUVmean normal brain parenchyma
Fig. 5
Fig. 5
Scatter plot of individual lesion TBmean_1.3 of WHO II, III, and IV tumors at 40 min post-injection
Fig. 6
Fig. 6
Lesion by lesion correlation between fluciclovine TBmean_1.3 and Ki-67

References

    1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30. doi: 10.3322/caac.21387.
    1. Cheng JX, Zhang X, Liu BL. Health-related quality of life in patients with high-grade glioma. Neuro-Oncology. 2009;11:41–50. doi: 10.1215/15228517-2008-050.
    1. Scott JN, Brasher PMA, Sevick RJ, Rewcastle NB, Forsyth PA. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology. 2002;59:947–949. doi: 10.1212/WNL.59.6.947.
    1. Approvals SODDa. U.S. Food & Drug Administration website. . Accessed 30 May 2017.
    1. Sasajima T, Ono T, Shimada N, Doi Y, Oka S, Kanagawa M, et al. Trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid (anti-18F-FACBC) is a feasible alternative to 11C-methyl-L-methionine and magnetic resonance imaging for monitoring treatment response in gliomas. Nucl Med Biol. 2013;40:808–15. 10.1016/j.nucmedbio.2013.04.007.
    1. Doi Y, Kanagawa M, Maya Y, Tanaka A, Oka S, Nakata N, et al. Evaluation of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid accumulation in low-grade glioma in chemically induced rat models: PET and autoradiography compared with morphological images and histopathological findings. Nucl Med Biol. 2015;42:664–72. 10.1016/j.nucmedbio.2015.04.008.
    1. Kondo A, Ishii H, Aoki S, Suzuki M, Nagasawa H, Kubota K, et al. Phase IIa clinical study of [18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors. Ann Nucl Med. 2016;30:608–18. 10.1007/s12149-016-1102-y.
    1. Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999;40:331–8.
    1. Wakabayashi T, Iuchi T, Tsuyuguchi N, Nishikawa R, Arakawa Y, Sasayama T, et al. Diagnostic performance and safety of positron emission tomography using (18)F-fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial. Asia Ocean J Nucl Med Biol. 2017;5:10–21. 10.22038/aojnmb.2016.7869.
    1. Tsuyuguchi N, Terakawa Y, Uda T, Nakajo K, Kanemura Y. Diagnosis of brain tumors using amino acid transport PET imaging with (18)F-fluciclovine: a comparative study with L-methyl-(11)C-methionine PET imaging. Asia Ocean J Nucl Med Biol. 2017;5:85–94. 10.22038/aojnmb.2017.8843..
    1. Ono M, Oka S, Okudaira H, Schuster DM, Goodman MM, Kawai K, et al. Comparative evaluation of transport mechanisms of trans-1-amino-3-[(18)F]fluorocyclobutanecarboxylic acid and L-[methyl-(11)C]methionine in human glioma cell lines. Brain Res. 2013;1535:24–37. 10.1016/j.brainres.2013.08.037.
    1. Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. Transport mechanisms of trans-1-amino-3-fluoro[1-(14)C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol. 2012;39:109–19. 10.1016/j.nucmedbio.2011.06.008.
    1. Smith QR. Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr. 2000;130:1016S–1022S. doi: 10.1093/jn/130.4.1016S.
    1. McConathy J, Voll RJ, Yu W, Crowe RJ, Goodman MM. Improved synthesis of anti-[18F]FACBC: improved preparation of labeling precursor and automated radiosynthesis. Appl Radiat Isot. 2003;58:657–66.
    1. van Velden FH, Kloet RW, van Berckel BN, Wolfensberger SP, Lammertsma AA, Boellaard R. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods. Phys Med Biol. 2008;53:3217–3230. doi: 10.1088/0031-9155/53/12/010.
    1. Tscherpel C, Dunkl V, Ceccon G, Stoffels G, Judov N, Rapp M, et al. The use of O-(2-18F-fluoroethyl)-L-tyrosine PET in the diagnosis of gliomas located in the brainstem and spinal cord. Neuro-Oncology. 2016; 10.1093/neuonc/now243.
    1. Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res. 2014;20:3550–9. 10.1158/1078-0432.CCR-13-1440.
    1. Nedergaard MK, Kristoffersen K, Michaelsen SR, Madsen J, Poulsen HS, Stockhausen MT, et al. The use of longitudinal 18F-FET MicroPET imaging to evaluate response to irinotecan in orthotopic human glioblastoma multiforme xenografts. PLoS One. 2014;9:e100009. 10.1371/journal.pone.0100009.
    1. Johannessen AL, Torp SH. The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res. 2006;12:143–147. doi: 10.1007/BF02893360.
    1. Turkalp Z, Karamchandani J, Das S. IDH mutation in glioma: new insights and promises for the future. JAMA Neurol. 2014;71:1319–1325. doi: 10.1001/jamaneurol.2014.1205.
    1. Law M, Yang S, Wang H, Babb JS, Johnson G, Cha S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol. 2003;24:1989–1998.
    1. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514:291–302. doi: 10.1016/S0005-2736(01)00384-4.
    1. Imai H, Kaira K, Oriuchi N, Shimizu K, Tominaga H, Yanagitani N, et al. Inhibition of L-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res. 2010;30:4819–4828.
    1. del Amo EM, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci. 2008;35:161–174. doi: 10.1016/j.ejps.2008.06.015.
    1. Heiss P, Mayer S, Herz M, Wester HJ, Schwaiger M, Senekowitsch-Schmidtke R. Investigation of transport mechanism and uptake kinetics of O-(2-[18F]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med. 1999;40:1367–73.
    1. Youland RS, Kitange GJ, Peterson TE, Pafundi DH, Ramiscal JA, Pokorny JL, et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neuro-Oncol. 2013;111:11–8. 10.1007/s11060-012-0986-1.
    1. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, et al. MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging. 2012;39:1021–1029. doi: 10.1007/s00259-012-2109-9.
    1. Popperl G, Kreth FW, Mehrkens JH, Herms J, Seelos K, Koch W, et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging. 2007;34:1933–1942. doi: 10.1007/s00259-007-0534-y.
    1. Langen KJ, Bartenstein P, Boecker H, Brust P, Coenen HH, Drzezga A, et al. German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin. 2011;50:167–173. doi: 10.3413/nuk-2011041.
    1. Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Mille E, et al. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20–40 min scans. Eur J Nucl Med Mol Imaging. 2016;43:1105–14. 10.1007/s00259-015-3276-2.
    1. Fueger BJ, Czernin J, Cloughesy T, Silverman DH, Geist CL, Walter MA, et al. Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med. 2010;51:1532–8. 10.2967/jnumed.110.078592.
    1. Manabe O, Hattori N, Yamaguchi S, Hirata K, Kobayashi K, Terasaka S, et al. Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging. Eur J Nucl Med Mol Imaging. 2015;42:896–904. doi: 10.1007/s00259-015-2996-7.
    1. Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S, Debus J, et al. Intra-individual comparison of (18)F-FET and (18)F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology. 2014;16:434–40. 10.1093/neuonc/not199.
    1. Oka S, Okudaira H, Ono M, Schuster DM, Goodman MM, Kawai K, et al. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with L-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol. 2014;16:322–9. 10.1007/s11307-013-0693-0.

Source: PubMed

3
S'abonner