Effect of Human Papillomavirus Vaccine to Interrupt Recurrence of Vulvar and Anal Neoplasia (VIVA): A Trial Protocol

Helen C Stankiewicz Karita, Kirsten Hauge, Amalia Magaret, Constance Mao, Jeffrey Schouten, Verena Grieco, Long Fu Xi, Denise A Galloway, Margaret M Madeleine, Anna Wald, Helen C Stankiewicz Karita, Kirsten Hauge, Amalia Magaret, Constance Mao, Jeffrey Schouten, Verena Grieco, Long Fu Xi, Denise A Galloway, Margaret M Madeleine, Anna Wald

Abstract

Importance: Human papillomavirus (HPV), particularly HPV type 16, causes most anal and vulvar high-grade squamous intraepithelial lesions (HSIL), which are precursors to cancer. After initial treatment of HSIL, more than 30% of patients will have disease recurrence, with even higher recurrence among HIV-positive individuals and men who have sex with men. Recurrences can be debilitating and lead to significant morbidity and medical expense. Observational studies suggest a possible therapeutic benefit of the licensed HPV vaccines in reducing recurrent lesions in previously infected persons.

Objective: To test whether the licensed prophylactic HPV vaccine (Gardasil-9) can reduce the risk of HSIL recurrence by 50% in previously unvaccinated individuals recently treated for anal or vulvar HSIL.

Design, setting, and participants: This is a trial protocol for a randomized, double-blind, placebo-controlled, proof-of-concept clinical trial. Eligible participants are aged 27 to 69 at study start and have not received prior HPV vaccination, have had anal or vulvar HSIL diagnosed on or after January 1, 2014, and have no evidence of HSIL recurrence at screening. Persons infected with HIV are eligible for the study provided they are receiving antiretroviral therapy. Target enrollment is 345 individuals. The primary outcome is time to histopathologically confirmed recurrence of HSIL. Differences in the risk for recurrence of HSIL will be evaluated using Cox proportional hazard models. Additional analyses include (1) frequency of HSIL recurrence; (2) role of HPV antibodies in deterring recurrence; (3) role of HPV persistence in recurrence, as measured by HPV genotype or HPV-16 variant lineage determined using swab samples collected at months 0, 18, and 36; and (4) incidence of adverse events. The study will be conducted at the University of Washington Virology Research Clinic from 2017 through 2022. Participants will be followed up for up to 36 months in the clinic, and up to 42 months by telephone.

Discussion: Management of persistent or rapidly recurring anogenital HSIL remains challenging. Results from this study will provide evidence on whether incorporating the nonavalent HPV vaccine into routine care can decrease recurrence of anal and vulvar HSIL.

Trial registration: ClinicalTrials.gov identifier: NCT03051516.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Schouten reported grants from Fred Hutchinson Cancer Research Center during the conduct of the study. Dr Galloway reported personal fees from Merck outside the submitted work. Dr Wald reported grants from Vical and grants from Genocea outside the submitted work. No other disclosures were reported.

Figures

Figure 1.. CONSORT Diagram of the Vaccine…
Figure 1.. CONSORT Diagram of the Vaccine to Interrupt Progression of Vulvar and Anal Neoplasia (VIVA) Trial
HSIL indicates high-grade squamous intraepithelial lesions; 9vHPV, nonavalent human papillomavirus vaccine.
Figure 2.. Allocation Algorithm for the Vaccine…
Figure 2.. Allocation Algorithm for the Vaccine to Interrupt Progression of Vulvar and Anal Neoplasia Trial Using Dynamic Randomization
The procedure for randomizing a new participant is as follows. At the top level, within all those persons sharing the same anatomical site, HIV status, and category of time since diagnosis as the current participant to be enrolled, we check whether there are approximately equal numbers randomized to both groups. If strong imbalance exists (δ1 > 3, where δ is the difference between numbers enrolled to placebo and vaccine), then we force that participant into the group with fewer participants to improve the balance of characteristics between the vaccine and placebo groups. If no strong imbalance exists, we proceed to check the balance at the second level of hierarchy, and so on. We set δ1 = δ2 = δ3 = δ4 = 3. Dx indicates diagnosis; HSIL, high-grade squamous intraepithelial lesions.

References

    1. de Martel C, Plummer M, Vignat J, Franceschi S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int J Cancer. 2017;141(4):-. doi:10.1002/ijc.30716
    1. Saraiya M, Unger ER, Thompson TD, et al. ; HPV Typing of Cancers Workgroup . US assessment of HPV types in cancers: implications for current and 9-valent HPV vaccines. J Natl Cancer Inst. 2015;107(6):djv086. doi:10.1093/jnci/djv086
    1. Van Dyne EA, Henley SJ, Saraiya M, Thomas CC, Markowitz LE, Benard VB. Trends in human papillomavirus-associated cancers—United States, 1999-2015. MMWR Morb Mortal Wkly Rep. 2018;67(33):918-924. doi:10.15585/mmwr.mm6733a2
    1. National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer stat facts. . Accessed February 27, 2018.
    1. Saslow D, Solomon D, Lawson HW, et al. ; American Cancer Society; American Society for Colposcopy and Cervical Pathology; American Society for Clinical Pathology . American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol. 2012;137(4):516-542. doi:10.1309/AJCPTGD94EVRSJCG
    1. Noone AM, Howlader N, Krapcho M, et al. , eds. SEER Cancer Statistics Review, 1975-2015 Bethesda, MD: National Cancer Institute; 2018. . Updated September 10, 2018. Accessed August 2018. doi:10.1097/JOM.0000000000000152
    1. Jones RW, Rowan DM, Stewart AW. Vulvar intraepithelial neoplasia: aspects of the natural history and outcome in 405 women. Obstet Gynecol. 2005;106(6):1319-1326. doi:10.1097/01.AOG.0000187301.76283.7f
    1. van Seters M, van Beurden M, de Craen AJM. Is the assumed natural history of vulvar intraepithelial neoplasia III based on enough evidence? a systematic review of 3322 published patients. Gynecol Oncol. 2005;97(2):645-651. doi:10.1016/j.ygyno.2005.02.012
    1. Moscicki AB, Schiffman M, Burchell A, et al. . Updating the natural history of human papillomavirus and anogenital cancers. Vaccine. 2012;30(5)(suppl 5):F24-F33. doi:10.1016/j.vaccine.2012.05.089
    1. National Cancer Institute Surveillance, Epidemiology, and End Results Program. SEER database. . Published April 2018. Accessed August 2018.
    1. American College of Obstetricians and Gynecologists’ Committee on Gynecologic Practice; American Society for Colposcopy and Cervical Pathology (ASCCP) . Committee opinion No. 675: management of vulvar intraepithelial neoplasia. Obstet Gynecol. 2016;128(4):e178-e182. doi:10.1097/AOG.0000000000001713
    1. van der Meijden WI, Boffa MJ, Ter Harmsel WA, et al. . 2016 European guideline for the management of vulval conditions. J Eur Acad Dermatol Venereol. 2017;31(6):925-941. doi:10.1111/jdv.14096
    1. Richel O, de Vries HJC, van Noesel CJM, Dijkgraaf MGW, Prins JM. Comparison of imiquimod, topical fluorouracil, and electrocautery for the treatment of anal intraepithelial neoplasia in HIV-positive men who have sex with men: an open-label, randomised controlled trial. Lancet Oncol. 2013;14(4):346-353. doi:10.1016/S1470-2045(13)70067-6
    1. Satmary W, Holschneider CH, Brunette LL, Natarajan S. Vulvar intraepithelial neoplasia: risk factors for recurrence. Gynecol Oncol. 2018;148(1):126-131. doi:10.1016/j.ygyno.2017.10.029
    1. Fehr MK, Baumann M, Mueller M, et al. . Disease progression and recurrence in women treated for vulvovaginal intraepithelial neoplasia. J Gynecol Oncol. 2013;24(3):236-241. doi:10.3802/jgo.2013.24.3.236
    1. Jones RW. Vulval intraepithelial neoplasia: current perspectives. Eur J Gynaecol Oncol. 2001;22(6):393-402.
    1. Pineda CE, Berry JM, Jay N, Palefsky JM, Welton ML. High-resolution anoscopy targeted surgical destruction of anal high-grade squamous intraepithelial lesions: a ten-year experience. Dis Colon Rectum. 2008;51(6):829-835. doi:10.1007/s10350-008-9233-4
    1. Modesitt SC, Waters AB, Walton L, Fowler WC Jr, Van Le L. Vulvar intraepithelial neoplasia III: occult cancer and the impact of margin status on recurrence. Obstet Gynecol. 1998;92(6):962-966. doi:10.1016/S0029-7844(98)00350-0
    1. Wallbillich JJ, Rhodes HE, Milbourne AM, et al. . Vulvar intraepithelial neoplasia (VIN 2/3): comparing clinical outcomes and evaluating risk factors for recurrence. Gynecol Oncol. 2012;127(2):312-315. doi:10.1016/j.ygyno.2012.07.118
    1. Goldstone RN, Goldstone AB, Russ J, Goldstone SE. Long-term follow-up of infrared coagulator ablation of anal high-grade dysplasia in men who have sex with men. Dis Colon Rectum. 2011;54(10):1284-1292. doi:10.1097/DCR.0b013e318227833e
    1. Madeleine MM, Johnson LG, Doody DR, Tipton ER, Carter JJ, Galloway DA. Natural antibodies to human papillomavirus 16 and recurrence of vulvar high-grade intraepithelial neoplasia (VIN3). J Low Genit Tract Dis. 2016;20(3):257-260. doi:10.1097/LGT.0000000000000227
    1. Harper DM, DeMars LR. HPV vaccines—a review of the first decade. Gynecol Oncol. 2017;146(1):196-204. doi:10.1016/j.ygyno.2017.04.004
    1. Wilkin T, Lee JY, Lensing SY, et al. . Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1-infected men. J Infect Dis. 2010;202(8):1246-1253. doi:10.1086/656320
    1. Kojic EM, Kang M, Cespedes MS, et al. . Immunogenicity and safety of the quadrivalent human papillomavirus vaccine in HIV-1-infected women. Clin Infect Dis. 2014;59(1):127-135. doi:10.1093/cid/ciu238
    1. Schwarz TF, Spaczynski M, Schneider A, et al. ; HPV Study Group for Adult Women . Immunogenicity and tolerability of an HPV-16/18 AS04-adjuvanted prophylactic cervical cancer vaccine in women aged 15-55 years. Vaccine. 2009;27(4):581-587. doi:10.1016/j.vaccine.2008.10.088
    1. Castellsagué X, Muñoz N, Pitisuttithum P, et al. . End-of-study safety, immunogenicity, and efficacy of quadrivalent HPV (types 6, 11, 16, 18) recombinant vaccine in adult women 24-45 years of age. Br J Cancer. 2011;105(1):28-37. doi:10.1038/bjc.2011.185
    1. Luna J, Plata M, Gonzalez M, et al. . Long-term follow-up observation of the safety, immunogenicity, and effectiveness of Gardasil™ in adult women. PLoS One. 2013;8(12):e83431. doi:10.1371/journal.pone.0083431
    1. Joura EA, Garland SM, Paavonen J, et al. ; FUTURE I and II Study Group . Effect of the human papillomavirus (HPV) quadrivalent vaccine in a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ. 2012;344(3):e1401. doi:10.1136/bmj.e1401
    1. Kang WD, Choi HS, Kim SM. Is vaccination with quadrivalent HPV vaccine after loop electrosurgical excision procedure effective in preventing recurrence in patients with high-grade cervical intraepithelial neoplasia (CIN2-3)? Gynecol Oncol. 2013;130(2):264-268. doi:10.1016/j.ygyno.2013.04.050
    1. Swedish KA, Factor SH, Goldstone SE. Prevention of recurrent high-grade anal neoplasia with quadrivalent human papillomavirus vaccination of men who have sex with men: a nonconcurrent cohort study. Clin Infect Dis. 2012;54(7):891-898. doi:10.1093/cid/cir1036
    1. Olsson SE, Kjaer SK, Sigurdsson K, et al. . Evaluation of quadrivalent HPV 6/11/16/18 vaccine efficacy against cervical and anogenital disease in subjects with serological evidence of prior vaccine type HPV infection. Hum Vaccin. 2009;5(10):696-704. doi:10.4161/hv.5.10.9515
    1. Stanley M. Immune responses to human papillomavirus. Vaccine. 2006;24(suppl 1):S16-S22. doi:10.1016/j.vaccine.2005.09.002
    1. Stanley M, Pinto LA, Trimble C. Human papillomavirus vaccines—immune responses. Vaccine. 2012;30(5)(suppl 5):F83-F87. doi:10.1016/j.vaccine.2012.04.106
    1. Pinto LA, Edwards J, Castle PE, et al. . Cellular immune responses to human papillomavirus (HPV)-16 L1 in healthy volunteers immunized with recombinant HPV-16 L1 virus-like particles. J Infect Dis. 2003;188(2):327-338. doi:10.1086/376505
    1. Zurek Munk-Madsen M, Toft L, Kube T, et al. . Cellular immunogenicity of human papillomavirus vaccines Cervarix and Gardasil in adults with HIV infection. Hum Vaccin Immunother. 2018;14(4):909-916. doi:10.1080/21645515.2017.1407896
    1. Weinberg A, Song LY, Saah A, et al. ; IMPAACT/PACTG P1047 Team . Humoral, mucosal, and cell-mediated immunity against vaccine and nonvaccine genotypes after administration of quadrivalent human papillomavirus vaccine to HIV-infected children. J Infect Dis. 2012;206(8):1309-1318. doi:10.1093/infdis/jis489
    1. Signorini DF, Leung O, Simes RJ, Beller E, Gebski VJ, Callaghan T. Dynamic balanced randomization for clinical trials. Stat Med. 1993;12(24):2343-2350. doi:10.1002/sim.4780122410
    1. Odell PM, Anderson KM, D’Agostino RB. Maximum likelihood estimation for interval-censored data using a Weibull-based accelerated failure time model. Biometrics. 1992;48(3):951-959. doi:10.2307/2532360
    1. Li H, Han D, Hou Y, Chen H, Chen Z. Statistical inference methods for two crossing survival curves: a comparison of methods. PLoS One. 2015;10(1):e0116774. doi:10.1371/journal.pone.0116774
    1. Liu K, Qiu P, Sheng J. Comparing two crossing hazard rates by Cox proportional hazards modelling. Stat Med. 2007;26(2):375-391. doi:10.1002/sim.2544
    1. Forsythe AB. Validity and power of tests when groups have been balanced for prognostic factors. Comput Stat Data Anal. 1987;5(1):19. doi:10.1016/0167-9473(87)90015-6
    1. Scott NW, McPherson GC, Ramsay CR, Campbell MK. The method of minimization for allocation to clinical trials. a review. Control Clin Trials. 2002;23(6):662-674. doi:10.1016/S0197-2456(02)00242-8
    1. Wilkin TJ, Chen H, Cespedes MS, et al. . A randomized, placebo-controlled trial of the quadrivalent human papillomavirus vaccine in human immunodeficiency virus-infected adults aged 27 years or older: AIDS Clinical Trials Group Protocol A5298. Clin Infect Dis. 2018;67(9):1339-1346. doi:10.1093/cid/ciy274
    1. Madeleine MM, Finch JL, Lynch CF, Goodman MT, Engels EA. HPV-related cancers after solid organ transplantation in the United States. Am J Transplant. 2013;13(12):3202-3209. doi:10.1111/ajt.12472
    1. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007;370(9581):59-67. doi:10.1016/S0140-6736(07)61050-2
    1. Machalek DA, Poynten M, Jin F, et al. . Anal human papillomavirus infection and associated neoplastic lesions in men who have sex with men: a systematic review and meta-analysis. Lancet Oncol. 2012;13(5):487-500. doi:10.1016/S1470-2045(12)70080-3
    1. Park LS, Tate JP, Sigel K, et al. . Association of viral suppression with lower AIDS-defining and non-AIDS-defining cancer incidence in HIV-infected veterans: a prospective cohort study. Ann Intern Med. 2018;169(2):87-96. doi:10.7326/M16-2094
    1. Herod JJ, Shafi MI, Rollason TP, Jordan JA, Luesley DM. Vulvar intraepithelial neoplasia: long term follow up of treated and untreated women. Br J Obstet Gynaecol. 1996;103(5):446-452. doi:10.1111/j.1471-0528.1996.tb09771.x

Source: PubMed

3
S'abonner