A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection

Tanya M Monaghan, Niharika A Duggal, Elisa Rosati, Ruth Griffin, Jamie Hughes, Brandi Roach, David Y Yang, Christopher Wang, Karen Wong, Lynora Saxinger, Maja Pučić-Baković, Frano Vučković, Filip Klicek, Gordan Lauc, Paddy Tighe, Benjamin H Mullish, Jesus Miguens Blanco, Julie A K McDonald, Julian R Marchesi, Ning Xue, Tania Dottorini, Animesh Acharjee, Andre Franke, Yingrui Li, Gane Ka-Shu Wong, Christos Polytarchou, Tung On Yau, Niki Christodoulou, Maria Hatziapostolou, Minkun Wang, Lindsey A Russell, Dina H Kao, Tanya M Monaghan, Niharika A Duggal, Elisa Rosati, Ruth Griffin, Jamie Hughes, Brandi Roach, David Y Yang, Christopher Wang, Karen Wong, Lynora Saxinger, Maja Pučić-Baković, Frano Vučković, Filip Klicek, Gordan Lauc, Paddy Tighe, Benjamin H Mullish, Jesus Miguens Blanco, Julie A K McDonald, Julian R Marchesi, Ning Xue, Tania Dottorini, Animesh Acharjee, Andre Franke, Yingrui Li, Gane Ka-Shu Wong, Christos Polytarchou, Tung On Yau, Niki Christodoulou, Maria Hatziapostolou, Minkun Wang, Lindsey A Russell, Dina H Kao

Abstract

Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies.

Keywords: Clostridioides difficile; fecal microbiota transplantation; host-microbial interactions; immunosenescence; systems biology.

Conflict of interest statement

T.M.M. has received consultancy fees from Takeda. B.H.M. has received consultancy fees from Finch Therapeutics Group. J.R.M. has received consultancy fees from Cultech Ltd. Port Talbot, UK, and Enterobiotix Ltd. Glasgow, Scotland. G.L. is founder and CEO of Genos, a private research organization that specializes in high-throughput glycomic analysis and has several patents in this field. M.P.-B. and F.V. are employees of Genos. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. The remaining authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Schematic of pipeline. (A) Multidimensional, longitudinal assays performed in patients receiving sequential fecal microbiota transplantation (FMT) either by enema or colonoscopy with severe or fulminant Clostridioides difficile infection; (B) Delivery route for each patient; (C) Methodologies utilized; (D) Treatment and sampling strategy with timelines.
Figure 2
Figure 2
Reversal of immunosenescence features in patients with severe or fulminant Clostridioides difficile infection post-sequential FMT. (A) Representative flow cytometry plots show the kinetics of peripheral CD28−ve CD57+ve senescent CD8 T cells in FMT responders (n = 2) (mean ± S.D data for patient’s 2 and 3) and a non-responder patient (n = 1) (patient 1). Percentage of peripheral (B) naïve CD8 T cells; (C) B cells; and (D) Unswitched memory B cells in responders at the start of the trial, post-FMT cycle 1, post-FMT C\cycle 2, post-final FMT cycle, and 1 week and 2 weeks after FMT. (E) Representative flow cytometry plots show the kinetics of peripheral CD24hi CD38hi regulatory B cells in FMT responders and non-responder patient at the start of the trial, post final FMT cycle and 1 week after FMT.
Figure 3
Figure 3
Heat map of normalized frequency values of selected immune subset parameters in the responders (patient 2 and 3 combined) and non-responder patient (patient 1) at different time points. Patients 1, 2 and 3 were clustered using hierarchical clustering (Euclidian distance based). High and low normalized frequency values are indicated in red and blue, respectively. Different immune subset percentages for FMT responders (n = 2; patients 2 and 3)) and non-responder (n = 1; patient 1) are indicated at the end of the column.
Figure 4
Figure 4
In vitro evaluation of antibody-mediated neutralization of Toxin B (patient 2, FMT responder). Sera were serially diluted and incubated with whole purified toxin B (toxinotype 0, strain VPI 10463, ribotype 087) before addition to VERO cells. Cytotoxicity was assessed by counting the number of rounded and non-rounded healthy cells, expressed as percentage protection. For patient 2, detection of neutralization against Toxin B became apparent post-FMT cycle 2 with 100% protection from Vero cell rounding observed with the most concentrated serum tested (1:4 dilution) compared to 0% at the 2 earlier time points. The degree of protection increased from this point over the course of treatment, with protective efficacy clearly detected even in the lowest dilution tested, 1:16. For 1:8 diluted sera, the mean percentage of healthy, non-rounded, protected cells increased from 36.57% at post-FMT cycle 2 to 62.43% pre-final FMT to 66.42% 1 week post-final FMT to 100% 2 weeks post-final FMT. Unlike this patient, patients 1 and 3 displayed no neutralization against Toxin B, and none of the patients showed neutralization against Toxin A throughout the treatment. Controls for this assay showed 100% rounding for cells incubated with the appropriate toxin alone and 100% healthy non-rounding for cells incubated with the respective serum dilution alone. Sera from patients 1 and 3 showed no neutralization against Toxin B. No neutralization was shown against Toxin A for patients 1, 2 or 3. Data from triplicate values +/− SD.
Figure 5
Figure 5
Fecal metataxonomic changes at the phylum level in relation to sequential FMT in severe or fulminant CDI patients. 16S rRNA gene sequencing of DNA extracted from stool samples, presented as relative abundance plots. Participant samples presented as: three stool donors; patient 1(001), earliest to latest timepoint; patient 2 (002), earliest to latest timepoint; patient 3 (003), earliest to latest timepoint; and the fourth patient, earliest to latest timepoint.
Figure 6
Figure 6
K-means clustering of trendlines of 562 valid measurements. Results shown for FMT responders (n = 2) (success group; (A)) and FMT non-responder (n = 1) (failure case; (B)) with each cluster indexed. Clusters are regrouped into four categories as highlighted in each row of the subplots: increased after FMT (up, red), increased after FMT but recovered (up-down, yellow), decreased after FMT but recovered or unchanged (down-up or unchanged, green), and decreased after FMT (down, blue).
Figure 7
Figure 7
Longitudinal TCR repertoire analysis. (A) TCR repertoire clonality calculated as the inverse of the Shannon entropy on sampled peripheral blood mononuclear samples to 1000 TCR sequences. (B) Temporal clustering performed with Mfuzz R package for the 50 most abundant TCRs, alpha and beta, for each time point for patient 1 (FMT failure/non-responder), patient 2 (FMT success/responder) and patient 3 (FMT success/responder). The figure shows 3 exemplary clusters out of 6 for each patient. Thin grey lines in the background represent single clonotypes. The median value of the temporal trajectories of TCR alpha (violet) and beta (green) chains for each cluster is displayed. (C) Exemplary TCR CDR3 amino acid sequences of the most interesting temporal clusters containing TCRs increasing or decreasing in abundance during and after FMT for patients 2 and 3 and TCRs with high abundance at baseline and during disease recurrence for patient 1.

References

    1. Gravel D., Miller M., Simor A., Taylor G., Gardam M., McGeer A., Hutchinson J., Moore D., Kelly S., Boyd D., et al. Health Care–AssociatedClostridium difficileInfection in Adults Admitted to Acute Care Hospitals in Canada: A Canadian Nosocomial Infection Surveillance Program Study. Clin. Infect. Dis. 2009;48:568–576. doi: 10.1086/596703.
    1. Kyne L., Hamel M.B., Polavaram R., Kelly C.P. Health Care Costs and Mortality Associated with Nosocomial Diarrhea Due to Clostridium difficile. Clin. Infect. Dis. 2002;34:346–353. doi: 10.1086/338260.
    1. McDonald L.C., Gerding D.N., Johnson S., Bakken J.S., Carroll K.C., E Coffin S., Dubberke E.R., Garey K.W., Gould C.V., Kelly C., et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) Clin. Infect. Dis. 2018;66:987–994. doi: 10.1093/cid/ciy149.
    1. Martin J.S., Monaghan T.M., Wilcox M.H. Clostridium difficile infection: Epidemiology, diagnosis and understanding transmission. Nat. Rev. Gastroenterol. Hepatol. 2016;13:206–216. doi: 10.1038/nrgastro.2016.25.
    1. Monaghan T.M. New Perspectives in Clostridium difficile Disease Pathogenesis. Infect. Dis. Clin. N. Am. 2015;29:1–11. doi: 10.1016/j.idc.2014.11.007.
    1. Baunwall S.M.D., Lee M.M., Eriksen M.K., Mullish B.H., Marchesi J.R., Dahlerup J.F., Hvas C.L. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: An updated systematic review and meta-analysis. EClinicalMedicine. 2020;29–30:100642. doi: 10.1016/j.eclinm.2020.100642.
    1. Fischer M., Sipe B., Cheng Y.-W., Phelps E., Rogers N., Sagi S., Bohm M., Xu H., Kassam Z. Fecal microbiota transplant in severe and severe-complicated Clostridium difficile: A promising treatment approach. Gut Microbes. 2016;8:289–302. doi: 10.1080/19490976.2016.1273998.
    1. Weingarden A.R., Hamilton M.J., Sadowsky M.J., Khoruts A. Resolution of Severe Clostridium difficile Infection Following Sequential Fecal Microbiota Transplantation. J. Clin. Gastroenterol. 2013;47:735–737. doi: 10.1097/MCG.0b013e31829004ae.
    1. Alukal J., Dutta S.K., Surapaneni B.K., Le M., Tabbaa O., Phillips L., Mattar M.C., Philips L. Safety and efficacy of fecal microbiota transplant in 9 critically ill patients with severe and complicated Clostridium difficile infection with impending colectomy. J. Dig. Dis. 2019;20:301–307. doi: 10.1111/1751-2980.12750.
    1. Ianiro G., Masucci L., Quaranta G., Simonelli C., Lopetuso L.R., Sanguinetti M., Gasbarrini A., Cammarota G. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions. Aliment. Pharmacol. Ther. 2018;48:152–159. doi: 10.1111/apt.14816.
    1. Khoruts A., Staley C., Sadowsky M.J. Faecal microbiota transplantation for Clostridioides difficile: Mechanisms and pharmacology. Nat. Rev. Gastroenterol. Hepatol. 2020;18:67–80. doi: 10.1038/s41575-020-0350-4.
    1. Monaghan T., Mullish B.H., Patterson J., Wong G.K., Marchesi J.R., Xu H., Jilani T., Kao D. Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway. Gut Microbes. 2018;10:142–148. doi: 10.1080/19490976.2018.1506667.
    1. Weingarden A.R., Chen C., Bobr A., Yao D., Lu Y., Nelson V.M., Sadowsky M., Khoruts A. Microbiota transplantation restores normal fecal bile acid composition in recurrentClostridium difficileinfection. Am. J. Physiol. Liver Physiol. 2014;306:G310–G319. doi: 10.1152/ajpgi.00282.2013.
    1. Mullish B.H., McDonald J.A.K., Pechlivanis A., Allegretti J.R., Kao D., Barker G.F., Kapila D., Petrof E.O., Joyce S.A., Gahan C., et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut. 2019;68:1791–1800. doi: 10.1136/gutjnl-2018-317842.
    1. Allegretti J.R., Kearney S.M., Li N., Bogart E., Bullock K., Gerber G.K., Bry L., Clish C., Alm E.J., Korzenik J. RecurrentClostridium difficileinfection associates with distinct bile acid and microbiome profiles. Aliment. Pharmacol. Ther. 2016;43:1142–1153. doi: 10.1111/apt.13616.
    1. Campbell C., McKenney P.T., Konstantinovsky D., Isaeva O., Schizas M., Verter J., Mai C., Jin W.-B., Guo C.-J., Violante S., et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature. 2020;581:475–479. doi: 10.1038/s41586-020-2193-0.
    1. Seekatz A.M., Theriot C.M., Rao K., Chang Y.-M., Freeman A.E., Kao J.Y., Young V.B. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection. Anaerobe. 2018;53:64–73. doi: 10.1016/j.anaerobe.2018.04.001.
    1. McDonald J., Mullish B., Pechlivanis A., Liu Z., Brignardello J., Kao D., Holmes E., Li J., Clarke T.B., Thursz M., et al. Inhibiting Growth of Clostridioides difficile by Restoring Valerate, Produced by the Intestinal Microbiota. Gastroenterology. 2018;155:1495–1507.e15. doi: 10.1053/j.gastro.2018.07.014.
    1. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y M., Glickman J.N., Garrett W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science. 2013;341:569–573. doi: 10.1126/science.1241165.
    1. Monaghan T.M., Pučić-Baković M., Vučković F., Lee C., Kao D., Wójcik I., Kliček F., Polytarchou C., Roach B., Louie T., et al. Decreased Complexity of Serum N-glycan Structures Associates with Successful Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection. Gastroenterology. 2019;157:1676–1678.e3. doi: 10.1053/j.gastro.2019.08.034.
    1. Abhyankar M.M., Ma J.Z., Scully K.W., Nafziger A.J., Frisbee A.L., Saleh M.M., Madden G.R., Hays A.R., Poulter M., Petri W.A. Immune Profiling To Predict Outcome of Clostridioides difficile Infection. mBio. 2020;11:e00905-20. doi: 10.1128/mBio.00905-20.
    1. Rees W., Steiner T.S. Adaptive immune response toClostridium difficileinfection: A perspective for prevention and therapy. Eur. J. Immunol. 2018;48:398–406. doi: 10.1002/eji.201747295.
    1. Monaghan T., Robins A., Knox A., Sewell H.F., Mahida Y.R. Circulating Antibody and Memory B-Cell Responses to C. difficile Toxins A and B in Patients with C. difficile-Associated Diarrhoea, Inflammatory Bowel Disease and Cystic Fibrosis. PLoS ONE. 2013;8:e74452. doi: 10.1371/journal.pone.0074452.
    1. Devera T.S., Lang G.A., Lanis J.M., Rampuria P., Gilmore C.L., James J.A., Ballard J.D., Lang M.L. Memory B Cells Encode Neutralizing Antibody Specific for Toxin B from the Clostridium difficile Strains VPI 10463 and NAP1/BI/027 but with Superior Neutralization of VPI 10463 Toxin B. Infect. Immun. 2016;84:194–204. doi: 10.1128/IAI.00011-15.
    1. Amani S.A., Shadid T., Ballard J.D., Lang M.L. Clostridioides difficile Infection Induces an Inferior IgG Response to That Induced by Immunization and Is Associated with a Lack of T Follicular Helper Cell and Memory B Cell Expansion. Infect. Immun. 2020;88:e00829-19. doi: 10.1128/IAI.00829-19.
    1. Kao D., Roach B., Silva M., Beck P., Rioux K., Kaplan G.G., Chang H.-J., Coward S., Goodman K.J., Xu H., et al. Effect of Oral Capsule- vs. Colonoscopy-Delivered Fecal Microbiota Transplantation on Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. JAMA. 2017;318:1985–1993. doi: 10.1001/jama.2017.17077.
    1. Mullish B.H., Pechlivanis A., Barker G.F., Thursz M.R., Marchesi J., McDonald J.A. Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods. 2018;149:49–58. doi: 10.1016/j.ymeth.2018.04.028.
    1. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869.
    1. Akmačić I.T., Ugrina I., Štambuk J., Gudelj I., Vučković F., Lauc G., Pučić-Baković M. High-throughput glycomics: Optimization of sample preparation. Biochemistry. 2015;80:934–942. doi: 10.1134/s0006297915070123.
    1. Šimurina M., de Haan N., Vučković F., Kennedy N.A., Štambuk J., Falck D., Trbojević-Akmačić I., Clerc F., Razdorov G., Khon A., et al. Glycosylation of Immunoglobulin G Associates With Clinical Features of Inflammatory Bowel Diseases. Gastroenterology. 2018;154:1320–1333.e10. doi: 10.1053/j.gastro.2018.01.002.
    1. Monaghan T.M., Seekatz A.M., Markham N.O., Yau T.O., Hatziapostolou M., Jilani T., Christodoulou N., Roach B., Birli E., Pomenya O., et al. Fecal Microbiota Transplantation for Recurrent Clostridioides difficile Infection Associates With Functional Alterations in Circulating microRNAs. Gastroenterology. 2021;161:255–270.e4. doi: 10.1053/j.gastro.2021.03.050.
    1. Negm O.H., Hamed M.R., Dilnot E.M., Shone C.C., Marszalowska I., Lynch M., Loscher C.E., Edwards L., Tighe P., Wilcox M.H., et al. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis. Clin. Vaccine Immunol. 2015;22:1033–1039. doi: 10.1128/CVI.00190-15.
    1. Negm O.H., MacKenzie B., Hamed M.R., Ahmad O.A.J., Shone C.C., Humphreys D.P., Acharya K.R., Loscher C.E., Marszalowska I., Lynch M., et al. Protective antibodies against Clostridium difficile are present in intravenous immunoglobulin and are retained in humans following its administration. Clin. Exp. Immunol. 2017;188:437–443. doi: 10.1111/cei.12946.
    1. Monaghan T.M., Negm O.H., MacKenzie B., Hamed M.R., Shone C.C., Humphreys D.P., Acharya K.R., Wilcox M.H. High prevalence of subclass-specific binding and neutralizing antibodies against Clostridium difficile toxins in adult cystic fibrosis sera: Possible mode of immunoprotection against symptomatic C. difficile infection. Clin. Exp. Gastroenterol. 2017;10:169–175. doi: 10.2147/CEG.S133939.
    1. Duggal N.A., Pollock R.D., Lazarus N.R., Harridge S., Lord J.M. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. 2018;17:e12750. doi: 10.1111/acel.12750.
    1. Duggal N.A., Upton J., Phillips A.C., Sapey E., Lord J.M. An age-related numerical and functional deficit in CD19+CD24hiCD38hiB cells is associated with an increase in systemic autoimmunity. Aging Cell. 2013;12:873–881. doi: 10.1111/acel.12114.
    1. Pogorelyy M.V., Elhanati Y., Marcou Q., Sycheva A.L., Komech E.A., Nazarov V.I., Britanova O.V., Chudakov D.M., Mamedov I.Z., Lebedev Y.B., et al. Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires. PLoS Comput. Biol. 2017;13:e1005572. doi: 10.1371/journal.pcbi.1005572.
    1. Shugay M., Britanova O.V., Merzlyak E., Turchaninova M., Mamedov I.Z., Tuganbaev T.R., Bolotin D., Staroverov D., Putintseva E., Plevova K., et al. Towards error-free profiling of immune repertoires. Nat. Methods. 2014;11:653–655. doi: 10.1038/nmeth.2960.
    1. Bolotin D., Poslavsky S., Mitrophanov I., Shugay M., Mamedov I.Z., Putintseva E., Chudakov D.M. MiXCR: Software for comprehensive adaptive immunity profiling. Nat. Methods. 2015;12:380–381. doi: 10.1038/nmeth.3364.
    1. Oksanene J.B., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., Stevens M.H.H., et al. R Package Version 2.5-6. Vegan: Community Ecology Package. 2019. [(accessed on 3 June 2021)]. Available online: .
    1. Kumar L., Futschik M.E. Mfuzz: A software package for soft clustering of microarray data. Bioinformation. 2007;2:5–7. doi: 10.6026/97320630002005.
    1. Müllner D. Modern hierachical, agglomerative clustering algorithms. arXiv. 20111109.2378
    1. Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019;68:e86. doi: 10.1002/cpbi.86.
    1. Seyda M., Quante M., Uehara H., Slegtenhorst B.R., Elkhal A., Tullius S.G. Immunosenescence in renal transplantation: A changing balance of innate and adaptive immunity. Curr. Opin. Organ Transplant. 2015;20:417–423. doi: 10.1097/MOT.0000000000000210.
    1. Aiello A., Farzaneh F., Candore G., Caruso C., Davinelli S., Gambino C.M., Ligotti M.E., Zareian N., Accardi G. Immunosenescence and Its Hallmarks: How to Oppose Aging Strategically? A Review of Potential Options for Therapeutic Intervention. Front. Immunol. 2019;10:2247. doi: 10.3389/fimmu.2019.02247.
    1. Sun Y., Coppé J.-P., Lam E. Cellular Senescence: The Sought or the Unwanted? Trends Mol. Med. 2018;24:871–885. doi: 10.1016/j.molmed.2018.08.002.
    1. Larochette V., Miot C., Poli C., Beaumont E., Roingeard P., Fickenscher H., Jeannin P., Delneste Y. IL-26, a Cytokine With Roles in Extracellular DNA-Induced Inflammation and Microbial Defense. Front. Immunol. 2019;10:204. doi: 10.3389/fimmu.2019.00204.
    1. Nakagawa H., Sasagawa S., Itoh K. Sodium butyrate induces senescence and inhibits the invasiveness of glioblastoma cells. Oncol. Lett. 2017;15:1495–1502. doi: 10.3892/ol.2017.7518.
    1. Li H., Luo Y.-F., Wang Y.-S., Xiao Y.-L., Cai H.-R., Xie C.-M. Pseudomonas aeruginosa induces cellular senescence in lung tissue at the early stage of two-hit septic mice. Pathog. Dis. 2018;76:ftz001. doi: 10.1093/femspd/ftz001.
    1. Koch S., Larbi A., Özcelik D., Solana R., Gouttefangeas C., Attig S., Wikby A., Strindhall J., Franceschi C., Pawelec G. Cytomegalovirus Infection: A Driving Force in Human T Cell Immunosenescence. Ann. N. Y. Acad. Sci. 2007;1114:23–35. doi: 10.1196/annals.1396.043.
    1. Koide N., Morikawa A., Ito H., Sugiyama T., Hassan F., Islam S., Tumurkhuu G., Mori I., Yoshida T., Yokochi T. Defective responsiveness of CD5+ B1 cells to lipopolysaccharide in cytokine production. J. Endotoxin Res. 2006;12:346–351. doi: 10.1177/09680519060120060401.
    1. Heath J.J., Grant M.D. The Immune Response Against Human Cytomegalovirus Links Cellular to Systemic Senescence. Cells. 2020;9:766. doi: 10.3390/cells9030766.
    1. Couzi L., Pitard V., Moreau J.F., Merville P., Dechanet-Merville J. Direct and Indirect Effects of Cytomegalovirus-Induced gammadelta T Cells after Kidney Transplantation. Front. Immunol. 2015;6:3. doi: 10.3389/fimmu.2015.00003.
    1. Egli A., Humar A., Kumar D. State-of-the-Art Monitoring of Cytomegalovirus-Specific Cell-Mediated Immunity After Organ Transplant: A Primer for the Clinician. Clin. Infect. Dis. 2012;55:1678–1689. doi: 10.1093/cid/cis818.
    1. Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M.B., Coakley M., Lakshminarayanan B., O’Sullivan O., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319.
    1. Thanissery R., Winston J.A., Theriot C.M. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe. 2017;45:86–100. doi: 10.1016/j.anaerobe.2017.03.004.
    1. Tam J., Icho S., Utama E., Orrell K.E., Gómez-Biagi R.F., Theriot C.M., Kroh H.K., Rutherford S.A., Lacy D.B., Melnyk R.A. Intestinal bile acids directly modulate the structure and function of C. difficile TcdB toxin. Proc. Natl. Acad. Sci. USA. 2020;117:6792–6800. doi: 10.1073/pnas.1916965117.
    1. Weingarden A.R., Dosa P., Dewinter E., Steer C.J., Shaughnessy M.K., Johnson J.R., Khoruts A., Sadowsky M.J. Changes in Colonic Bile Acid Composition following Fecal Microbiota Transplantation Are Sufficient to Control Clostridium difficile Germination and Growth. PLoS ONE. 2016;11:e0147210. doi: 10.1371/journal.pone.0147210.
    1. Martinez-Gili L., McDonald J.A.K., Liu Z., Kao D., Allegretti J.R., Monaghan T.M., Barker G.F., Blanco J.M., Williams H.R.T., Holmes E., et al. Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent Clostridioides difficile infection and beyond: The contribution of gut microbial-derived metabolites. Gut Microbes. 2020;12:1810531. doi: 10.1080/19490976.2020.1810531.
    1. Sinha S.R., Haileselassie Y., Nguyen L.P., Tropini C., Wang M., Becker L.S., Sim D., Jarr K., Spear E.T., Singh G., et al. Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host Microbe. 2020;27:659–670.e5. doi: 10.1016/j.chom.2020.01.021.
    1. Glauben R., Batra A., Fedke I., Zeitz M., Lehr H.A., Leoni F., Mascagni P., Fantuzzi G., Dinarello C.A., Siegmund B. Histone Hyperacetylation Is Associated with Amelioration of Experimental Colitis in Mice. J. Immunol. 2006;176:5015–5022. doi: 10.4049/jimmunol.176.8.5015.
    1. Gudelj I., Lauc G., Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell. Immunol. 2018;333:65–79. doi: 10.1016/j.cellimm.2018.07.009.
    1. Johal S.S., Lambert C., Hammond J., James P.D., Borriello S.P., Mahida Y.R. Colonic IgA producing cells and macrophages are reduced in recurrent and non-recurrent Clostridiumdifficile associated diarrhoea. J. Clin. Pathol. 2004;57:973–979. doi: 10.1136/jcp.2003.015875.
    1. Leslie J.L., Vendrov K.C., Jenior M.L., Young V.B. The Gut Microbiota Is Associated with Clearance of Clostridium difficile Infection Independent of Adaptive Immunity. mSphere. 2019;4:e00698-18. doi: 10.1128/mSphereDirect.00698-18.
    1. Sutton T.C., Lamirande E.W., Bock K.W., Moore I.N., Koudstaal W., Rehman M., Weverling G.J., Goudsmit J., Subbarao K. In Vitro Neutralization Is Not Predictive of Prophylactic Efficacy of Broadly Neutralizing Monoclonal Antibodies CR6261 and CR9114 against Lethal H2 Influenza Virus Challenge in Mice. J. Virol. 2017;91:e01603-17. doi: 10.1128/JVI.01603-17.
    1. Bootz A., Karbach A., Spindler J., Kropff B., Reuter N., Sticht H., Winkler T.H., Britt W.J., Mach M. Protective capacity of neutralizing and non-neutralizing antibodies against glycoprotein B of cytomegalovirus. PLoS Pathog. 2017;13:e1006601. doi: 10.1371/journal.ppat.1006601.
    1. Steele J., Chen K., Sun X., Zhang Y., Wang H., Tzipori S., Feng H. Systemic Dissemination of Clostridium difficile Toxins A and B Is Associated With Severe, Fatal Disease in Animal Models. J. Infect. Dis. 2011;205:384–391. doi: 10.1093/infdis/jir748.
    1. Lawrence S.J., Dubberke E.R., Johnson S., Gerding D.N. Clostridium difficile—Associated Disease Treatment Response Depends on Definition of Cure. Clin. Infect. Dis. 2007;45:1648. doi: 10.1086/523718.
    1. A Cohen N., Miller T., Na’Aminh W., Hod K., Adler A., Cohen D., Guzner-Gur H., Santo E., Halpern Z., Carmeli Y., et al. Clostridium difficile fecal toxin level is associated with disease severity and prognosis. United Eur. Gastroenterol. J. 2018;6:773–780. doi: 10.1177/2050640617750809.
    1. Mensen A., Oh Y., Becker S.C., Hemmati P.G., Jehn C., Westermann J., Szyska M., Göldner H., Dörken B., Scheibenbogen C., et al. Apoptosis Susceptibility Prolongs the Lack of Memory B Cells in Acute Leukemic Patients After Allogeneic Hematopoietic Stem Cell Transplantation. Biol. Blood Marrow Transplant. 2015;21:1895–1906. doi: 10.1016/j.bbmt.2015.08.008.
    1. Shah H.B., Smith K., Scott E.J., Larabee J.L., James J.A., Ballard J.D., Lang M.L. Human C. difficile toxin–specific memory B cell repertoires encode poorly neutralizing antibodies. JCI Insight. 2020;5:138137. doi: 10.1172/jci.insight.138137.
    1. Beckett J., Hester J., Issa F., Shankar S. Regulatory B cells in transplantation: Roadmaps to clinic. Transpl. Int. 2020;33:1353–1368. doi: 10.1111/tri.13706.
    1. Burrello C., Garavaglia F., Cribiù F.M., Ercoli G., Lopez G., Troisi J., Colucci A., Guglietta S., Carloni S., Guglielmetti S., et al. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat. Commun. 2018;9:5184. doi: 10.1038/s41467-018-07359-8.
    1. Amrouche K., Pers J.-O., Jamin C. Glatiramer Acetate Stimulates Regulatory B Cell Functions. J. Immunol. 2019;202:1970–1980. doi: 10.4049/jimmunol.1801235.
    1. Vaiserman A.M., Koliada A., Marotta F. Gut microbiota: A player in aging and a target for anti-aging intervention. Ageing Res. Rev. 2017;35:36–45. doi: 10.1016/j.arr.2017.01.001.
    1. Bárcena C., Valdés-Mas R., Mayoral P., Garabaya C., Durand S., Rodríguez F., Fernández-García M.T., Salazar N., Nogacka A.M., Garatachea N., et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 2019;25:1234–1242. doi: 10.1038/s41591-019-0504-5.
    1. Stebegg M., Silva-Cayetano A., Innocentin S., Jenkins T.P., Cantacessi C., Gilbert C., Linterman M.A. Heterochronic faecal transplantation boosts gut germinal centres in aged mice. Nat. Commun. 2019;10:2443. doi: 10.1038/s41467-019-10430-7.
    1. Schluter J., Peled J., Taylor B.P., Markey K.A., Smith J.A., Taur Y., Niehus R., Staffas A., Dai A., Fontana E., et al. The gut microbiota is associated with immune cell dynamics in humans. Nature. 2020;588:303–307. doi: 10.1038/s41586-020-2971-8.
    1. Gopalakrishnan V., Spencer C.N., Nezi L., Reuben A., Andrews M.C., Karpinets T.V., Prieto P.A., Vicente D., Hoffman K., Wei S.C., et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103. doi: 10.1126/science.aan4236.
    1. Routy B., Le Chatelier E., DeRosa L., Duong C.P.M., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P., et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2017;359:91–97. doi: 10.1126/science.aan3706.
    1. Feuth T., van Baarle D., van Erpecum K.J., Siersema P.D., Hoepelman A.I.M., Arends J.E. CD4/CD8 ratio is a promising candidate for non-invasive measurement of liver fibrosis in chronic HCV-monoinfected patients. Eur. J. Clin. Microbiol. Infect. Dis. 2014;33:1113–1117. doi: 10.1007/s10096-014-2053-7.

Source: PubMed

3
S'abonner