Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients

Md Ismail, Md Faruk Hossain, Arifur Rahman Tanu, Hossain Uddin Shekhar, Md Ismail, Md Faruk Hossain, Arifur Rahman Tanu, Hossain Uddin Shekhar

Abstract

Background and objective: Oxidative stress is intimately associated with many diseases, including chronic obstructive pulmonary disease (COPD). Study objectives include a comparison of the oxidative stress, antioxidant status, and lipid profile between COPD patients and controls and evaluation of the effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile of COPD patients.

Methods: 30 patients with COPD and 20 controls with no respiratory problems were selected. Global Initiative for Chronic Obstructive Lung Disease criteria were served as the basis of COPD diagnosis. The serum content of malondialdehyde (MDA), lipid hydroperoxide, glutathione (GSH), vitamin C, cholesterol, triglyceride (TG), and high density lipoprotein (HDL) was measured. The activity of superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST) was also measured. Two different doses, (500 × 2) mg and (500 × 4) mg spirulina, were given to two groups, each of which comprises 15 COPD patients.

Results: All targeted blood parameters have significant difference (P = 0.000) between COPD patients and controls except triglyceride (TG). Spirulina intake for 30 and 60 days at (500 × 2) mg dose has significantly reduced serum content of MDA, lipid hydroperoxide, and cholesterol (P = 0.000) while increasing GSH, Vit C level (P = 0.000), and the activity of SOD (P = 0.000) and GST (P = 0.038). At the same time, spirulina intake for 30 and 60 days at (500 × 4) mg dose has favorable significant effect (P = 0.000) on all targeted blood parameters except for HDL (P = 0.163).

References

    1. Jenner P. Oxidative stress in Parkinson’s disease. Annals of Neurology. 2003;53(supplement 3):S26–S38. doi: 10.1002/ana.10483.
    1. Yu Y.-C., Kuo C.-L., Cheng W.-L., Liu C.-S., Hsieh M. Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. Journal of Neuroscience Research. 2009;87(8):1884–1891. doi: 10.1002/jnr.22011.
    1. Diehn M., Cho R. W., Lobo N. A., et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–783. doi: 10.1038/nature07733.
    1. Andreadis A. A., Hazen S. L., Comhair S. A. A., Erzurum S. C. Oxidative and nitrosative events in asthma. Free Radical Biology & Medicine. 2003;35(3):213–225. doi: 10.1016/S0891-5849(03)00278-8.
    1. Comhair S. A. A., Ricci K. S., Arroliga M., et al. Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. American Journal of Respiratory and Critical Care Medicine. 2005;172(3):306–313. doi: 10.1164/rccm.200502-180OC.
    1. Kinnula V. L., Crapo J. D. Superoxide dismutases in the lung and human lung diseases. American Journal of Respiratory and Critical Care Medicine. 2003;167(12):1600–1619. doi: 10.1164/rccm.200212-1479SO.
    1. Kinnula V. L. Production and degradation of oxygen metabolites during inflammatory states in the human lung. Current Drug Targets: Inflammation and Allergy. 2005;4(4):465–470. doi: 10.2174/1568010054526368.
    1. Kirkman H. N., Rolfo M., Ferraris A. M., Gaetani G. F. Mechanisms of protection of catalase by NADPH: kinetics and stoichiometry. The Journal of Biological Chemistry. 1999;274(20):13908–13914. doi: 10.1074/jbc.274.20.13908.
    1. Flohé L. Glutathione peroxidase. Basic Life Sciences. 1988;49:663–668.
    1. Ladner J. E., Parsons J. F., Rife C. L., Gilliland G. L., Armstrong R. N. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1. Biochemistry. 2004;43(2):352–361. doi: 10.1021/bi035832z.
    1. Vojdani A., Bazargan M., Vojdani E., Wright J. New evidence for antioxidant properties of vitamin C. Cancer Detection and Prevention. 2000;24(6):508–523.
    1. Chen X., Touyz R. M., Park J. B., Schiffrin E. L. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 2001;38(3):606–611. doi: 10.1161/hy09t1.094005.
    1. Attia M. M. A., Sayed A. M., Ibrahim F. A., Mohammed A. S., El-alfy M. S. Effects of antioxidant vitamins on the oxidant/antioxidant status and liver function in homozygous beta-thalassemia. Romanian Journal of Biophysics. 2011;21:93–106.
    1. Amira S. R., Rakia M. R., Abdel Baset M. S. Antioxidants status in insulin and noninsulin dependent diabetes mellitus. Medical Journal of Cairo University. 2003;71:827–833.
    1. Masella R., Di Benedetto R., Varì R., Filesi C., Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. The Journal of Nutritional Biochemistry. 2005;16(10):577–586. doi: 10.1016/j.jnutbio.2005.05.013.
    1. Arja C., Surapaneni K. M., Raya P., Adimoolam C., Balisetty B., Kanala K. R. Oxidative stress and antioxidant enzyme activity in South Indian male smokers with chronic obstructive pulmonary disease. Respirology. 2013;18(7):1069–1075. doi: 10.1111/resp.12118.
    1. Lee E. H., Park J. E., Choi Y. J., Huh K. B., Kim W. Y. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutrition Research and Practice. 2008;2(4):295–300. doi: 10.4162/nrp.2008.2.4.295.
    1. Hirata T., Tanaka M., Ooike M., Tsunomura T., Sakaguchi M. Antioxidant activities of phycocyanobilin prepared from Spirulina platensis . Journal of Applied Phycology. 2000;12(3–5):435–439. doi: 10.1023/A:1008175217194.
    1. Mani U. V., Iyer U. M., Dhruv S. A., Mani I. U., Sharma K. S. Therapeutic utility of spirulina. In: Gershwin M. E., Belay A., editors. Spirulina in Human Nutrition and Health. New York, NY, USA: CRC press; 2008. pp. 71–99.
    1. Troosters T., Gosselink R., Decramer M. Six minute walking distance in healthy elderly subjects. European Respiratory Journal. 1999;14(2):270–274. doi: 10.1034/j.1399-3003.1999.14b06.x.
    1. Johns D. P., Pierce R. Pocket Guide to Spirometry. 2nd. Sydney, Australia: McGraw-Hill; 2007.
    1. Kluchová Z., Petrášová D., Joppa P., Dorková Z., Tkáčová R. The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiological Research. 2007;56(1):51–56.
    1. Rahman I., Swarska E., MacNee W., Stolk J., Henry M. Is there any relationship between plasma antioxidant capacity and lung function in smokers and in patients with chronic obstructive pulmonary disease? Thorax. 2000;55(3):189–193. doi: 10.1136/thorax.55.3.189.
    1. World Health Organization. 10 facts on obesity. 2000,
    1. Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta. 1991;196(2-3):143–151. doi: 10.1016/0009-8981(91)90067-M.
    1. Warholm M. Glutathione-s- transferases from human liver. In: Alton M., editor. Methods of Enzymology. New York, NY, USA: Academic Press; 1985. pp. 500–501.
    1. Beyer W. F., Jr., Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical Biochemistry. 1987;161(2):559–566. doi: 10.1016/0003-2697(87)90489-1.
    1. Beutler E., Duron O., Kelly B. M. Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine. 1963;61:882–888.
    1. Lowry O. H., Lopz J. A., Bessey O. A. Determination of ascorbic acid in small amount of serum. The Journal of Biological Chemistry. 1945;160:609–615.
    1. Kei S. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Clinica Chimica Acta. 1978;90(1):37–43. doi: 10.1016/0009-8981(78)90081-5.
    1. Yagi K. Simple procedure for specific assay of lipid hydroperoxides in serum or plasma. Methods in Molecular Biology. 1998;108:107–110.
    1. Corradi M., Rubinstein I., Andreoli R., et al. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2003;167(10):1380–1386. doi: 10.1164/rccm.200210-1253OC.
    1. Joppa P., Petrášová D., Stančák B., Dorková Z., Tkáčová R. Oxidative stress in patients with COPD and pulmonary hypertension. Wiener Klinische Wochenschrift. 2007;119(13-14):428–434. doi: 10.1007/s00508-007-0819-y.
    1. Vibhuti A., Arif E., Mishra A., et al. CYP1A1, CYP1A2 and CYBA gene polymorphisms associated with oxidative stress in COPD. Clinica Chimica Acta. 2010;411(7-8):474–480. doi: 10.1016/j.cca.2009.12.018.
    1. Lu H.-K., Hsieh C.-C., Hsu J.-J., Yang Y.-K., Chou H.-N. Preventive effects of Spirulina platensis on skeletal muscle damage under exercise-induced oxidative stress. European Journal of Applied Physiology. 2006;98(2):220–226. doi: 10.1007/s00421-006-0263-0.
    1. Park J. Y., Kim W. Y. The effect of spirulina on lipid metabolism, antioxidant capacity and immune function in Korean elderly. The Korean Journal of Nutrition. 2003;36:287–297.
    1. Iyer U. M., Parikh P. M., Mani U. Role of spirulina in the control of glycemia and lipidemia in type 2 diabetes mellitus. Journal of Medicinal Food. 2001;4(4):193–199. doi: 10.1089/10966200152744463.
    1. El-Sheekh M. M., Hamad S. M., Gomaa M. Protective effects of Spirulina on the liver function and hyperlipidemia of rats and human. Brazilian Archives of Biology and Technology. 2014;57(1):77–86. doi: 10.1590/S1516-89132014000100012.

Source: PubMed

3
S'abonner