Multimodal analysis of the effects of dexamethasone on high-altitude cerebral oedema: protocol for a pilot study

O Fisher, R A Benson, S Wayte, P K Kimani, C Hutchinson, C H E Imray, O Fisher, R A Benson, S Wayte, P K Kimani, C Hutchinson, C H E Imray

Abstract

Background: Acute mountain sickness (AMS) is a cluster of symptoms that commonly occur in those ascending to high altitudes. Symptoms can include headaches, nausea, insomnia and fatigue. Exposure to high altitude can also lead to high-altitude cerebral oedema (HACE), which is a potential cause of death whilst mountaineering. Generally, AMS precedes the development of HACE. Historical studies have demonstrated the effectiveness of regular dexamethasone administration in reducing the symptoms of AMS. However, the mechanism by which dexamethasone works to reduce symptoms AMS remains poorly understood. Further studies, simulating altitude using hypoxic tents, have characterised the effect of prolonged exposure to normobaric hypoxia on cerebral oedema and blood flow using MRI. This randomised trial assesses the effect of dexamethasone on hypoxia-induced cerebral oedema in healthy adult volunteers.

Methods/design: D4H is a double-blind placebo-controlled randomised trial assessing the effect of dexamethasone on hypoxia-induced cerebral oedema. In total, 20 volunteers were randomised in pairs to receive either 8.25 mg dexamethasone or normal saline placebo intravenously after 8 h of hypoxia with an FiO2 of 12%. Serial MRI images of the brain and spinal cord were obtained at hours 0, 7, 11, 22 and 26 of the study along with serum and urinary markers to correlate with the severity of cerebral oedema and the effect of the intervention.

Discussion: MRI has been used to identify changes in cerebral vasculature in the development of AMS and HACE. Dexamethasone is effective at reducing the symptoms of AMS; however, the mechanism of this effect is unknown. If this study demonstrates a clear objective benefit of dexamethasone in this setting, future studies may be able to demonstrate that dexamethasone is an effective therapy for oedema associated with brain and spinal cord ischaemia beyond AMS.

Trial registration: Clinicaltrials.gov, NCT03341676 . Registered on 14 November 2017.

Keywords: Altitude; MRI; acute mountain sickness; cerebral oedema; hypoxia; steroid.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Participant flow diagram. IMP investigational medicinal product

References

    1. Singh I, Khanna PK, Srivastava MC, Lal M, Roy SB, Subramanyam CS. Acute mountain sickness. N Engl J Med. 1969;280(4):175–184. doi: 10.1056/NEJM196901232800402.
    1. Verges S, Rupp T, Villien M, Lamalle L, Troprés I, Poquet C, et al. Multiparametric magnetic resonance investigation of brain adaptations to 6 days at 4350 m. Front Physiol. 2016;7:393. doi: 10.3389/fphys.2016.00393.
    1. Sagoo RS, Hutchinson CE, Wright A, Handford C, Parsons H, Sherwood V, et al. Magnetic Resonance investigation into the mechanisms involved in the development of high-altitude cerebral edema. J Cereb Blood Flow Metab. 2017;37(1):319–331. doi: 10.1177/0271678X15625350.
    1. Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R, Menold E, et al. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab. 2007;27(5):1064–1071. doi: 10.1038/sj.jcbfm.9600404.
    1. Schoonman GG, Sándor PS, Nirkko AC, Lange T, Jaermann T, Dydak U, et al. Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J Cereb Blood Flow Metab. 2008;28(1):198–206. doi: 10.1038/sj.jcbfm.9600513.
    1. Hunt JS, Theilmann RJ, Smith ZM, Scadeng M, Dubowitz DJ. Cerebral diffusion and T(2): MRI predictors of acute mountain sickness during sustained high-altitude hypoxia. J Cereb Blood Flow Metab. 2013;33(3):372–380. doi: 10.1038/jcbfm.2012.184.
    1. Baker LL, Kucharczyk J, Sevick RJ, Mintorovitch J, Moseley ME. Recent advances in MR imaging/spectroscopy of cerebral ischemia. AJR Am J Roentgenol. 1991;156(6):1133–1143. doi: 10.2214/ajr.156.6.2028855.
    1. Loher TJ, Bassetti CL, Lövblad KO, Stepper FP, Sturzenegger M, Kiefer C, et al. Diffusion-weighted MRI in acute spinal cord ischaemia. Neuroradiology. 2003;45(8):557–561. doi: 10.1007/s00234-003-1023-z.
    1. Nogueira RG, Ferreira R, Grant PE, Maier SE, Koroshetz WJ, Gonzalez RG, et al. Restricted diffusion in spinal cord infarction demonstrated by magnetic resonance line scan diffusion imaging. Stroke. 2012;43(2):532–535. doi: 10.1161/STROKEAHA.111.624023.
    1. Thurnher MM, Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology. 2006;48(11):795–801. doi: 10.1007/s00234-006-0130-z.
    1. Zhang JS, Huan Y, Sun LJ, Ge YL, Zhang XX, Chang YJ. Temporal evolution of spinal cord infarction in an in vivo experimental study of canine models characterized by diffusion-weighted imaging. J Magn Reson Imaging. 2007;26(4):848–854. doi: 10.1002/jmri.21044.
    1. Johnson TS, Rock PB, Fulco CS, Trad LA, Spark RF, Maher JT. Prevention of acute mountain sickness by dexamethasone. N Engl J Med. 1984;310(11):683–686. doi: 10.1056/NEJM198403153101103.
    1. Tang E, Chen Y, Luo Y. Dexamethasone for the prevention of acute mountain sickness: systematic review and meta-analysis. Int J Cardiol. 2014;173(2):133–138. doi: 10.1016/j.ijcard.2014.03.019.
    1. Berne M, Rubio R, Curnish R. Release of adenosine from ischemic brain effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res. 1974;35(2):262–271. doi: 10.1161/01.RES.35.2.262.
    1. Tian F, Bibi F, Dale N, Imray CHE. Blood purine measurements as a rapid real-time indicator of reversible brain ischaemia. Purinergic Signal. 2017;13(4):521–528. doi: 10.1007/s11302-017-9578-z.
    1. Talks B, Bradwell S, Delamere J, Rayner W, Clarke A, Christopher L, et al. Urinary alpha-1-acid glycoprotein is a sensitive marker of glomerular protein leakage at altitude. High Alt Med Biol. 2018;19(3):295-8.
    1. Blezer EL, Nicolay K, Koomans HA, Joles JA. Losartan versus enalapril on cerebral edema and proteinuria in stroke-prone hypertensive rats. Am J Hypertens. 2001;14(1):54–61. doi: 10.1016/S0895-7061(00)01231-0.
    1. Yuan W, Li G, Zeng M, Fu BM. Modulation of the blood–brain barrier permeability by plasma glycoprotein orosomucoid. Microvasc Res. 2010;80(1):148–157. doi: 10.1016/j.mvr.2010.03.011.
    1. Winterborn MH, Bradwell AR, Chesner IM, Jones GT. The origin of proteinuria at high altitude. Postgrad Med J. 1987;63(737):179–181. doi: 10.1136/pgmj.63.737.179.
    1. Roach RC, Hackett PH, Oelz O, Bärtsch P, Luks AM, MacInnis MJ, et al. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol. 2018;19(1):4–6. doi: 10.1089/ham.2017.0164.

Source: PubMed

3
S'abonner