Variability of Skin Pharmacokinetic Data: Insights from a Topical Bioequivalence Study Using Dermal Open Flow Microperfusion

Manfred Bodenlenz, Thomas Augustin, Thomas Birngruber, Katrin I Tiffner, Beate Boulgaropoulos, Simon Schwingenschuh, Sam G Raney, Elena Rantou, Frank Sinner, Manfred Bodenlenz, Thomas Augustin, Thomas Birngruber, Katrin I Tiffner, Beate Boulgaropoulos, Simon Schwingenschuh, Sam G Raney, Elena Rantou, Frank Sinner

Abstract

Purpose: Dermal open flow microperfusion (dOFM) has previously demonstrated its utility to assess the bioequivalence (BE) of topical drug products in a clinical study. We aimed to characterize the sources of variability in the dermal pharmacokinetic data from that study.

Methods: Exploratory statistical analyses were performed with multivariate data from a clinical dOFM-study in 20 healthy adults evaluating the BE, or lack thereof, of Austrian test (T) and U.S. reference (R) acyclovir cream, 5% products.

Results: The overall variability of logAUC values (CV: 39% for R and 45% for T) was dominated by inter-subject variability (R: 82%, T: 91%) which correlated best with the subject's skin conductance. Intra-subject variability was 18% (R) and 9% (T) of the overall variability; skin treatment sites or methodological factors did not significantly contribute to that variability.

Conclusions: Inter-subject variability was the major component of overall variability for acyclovir, and treatment site location did not significantly influence intra-subject variability. These results support a dOFM BE study design with T and R products assessed simultaneously on the same subject, where T and R treatment sites do not necessarily need to be next to each other. Localized variation in skin microstructure may be primarily responsible for intra-subject variability.

Keywords: Topical bioequivalence; acyclovir; dermal open flow microperfusion; inter- and intra-subject variability; microdialysis; skin pharmacokinetics.

Figures

Fig. 1
Fig. 1
AUC values (0–36 h) of all 240 probes in 20 subjects. Top panels: Untransformed AUC values for R (8 probes per subject, left side) and T (4 probes per subject, right side). Bottom panels: Log-transformed AUC values for R (left side) and T (right side)
Fig. 2
Fig. 2
Main sources of variability for R (left side) and T (right side) derived from an ANOVA
Fig. 3
Fig. 3
Multiple linear regression analysis combined with a backward elimination technique identified skin conductance as the sole parameter among those evaluated that appeared to be consistently associated with inter-subject variability. Left side: Relationship of logAUC vs. conductance for R, right side: Relationship of logAUC vs. conductance for T
Fig. 4
Fig. 4
Distribution of the aggregated normalized intra-subject AUC values for R (0–36 h), Left side: Normalized AUC values. Right side: Normalized logAUC values
Fig. 5
Fig. 5
Comparison of logAUC values between treatment sites on the left and the right leg for R (left side) and T (right side)
Fig. 6
Fig. 6
Mean differences of logAUC values between two probes depending on their positions and their distances relative to each other. Upper panel: logAUC values for R for adjacent probes in the same treatment site (Δ 1 cm) differed by logAUC 0.46 corresponding to an arithmetic mean difference of 59%. The difference between the logAUC values increased only slightly when the two probes were in two different treatment sites (Δ 3 cm and Δ 4 cm) or at different legs (Δ leg). Lower panel: logAUC values for T between adjacent probes differed by logAUC 0.44 corresponding to an arithmetic mean difference of 55%. The factor leg did not add any variation

References

    1. Benfeldt E, Hansen SH, Vølund A, Menné T, Shah VP. Bioequivalence of topical formulations in humans: evaluation by dermal microdialysis sampling and the dermatopharmacokinetic method. J Invest Dermatol. 2007;127(1):170–178. doi: 10.1038/sj.jid.5700495.
    1. Bodenlenz M, Tiffner KI, Raml R, Augustin T, Dragatin C, Birngruber T, et al. Open flow microperfusion as a dermal pharmacokinetic approach to evaluate topical bioequivalence. Clin Pharmacokinet. 2016;56(1):99. doi: 10.1007/s40262-016-0487-z.
    1. Krishnaiah YSR, Xu X, Rahman Z, Yang Y, Katragadda U, Lionberger R, Peters JR, Uhl K, Khan MA. Development of performance matrix for generic product equivalence of acyclovir topical creams. Int J Pharm [Internet] 2014;475(1–2):110–122. doi: 10.1016/j.ijpharm.2014.07.034.
    1. N’Dri-Stempfer B, Navidi WC, Guy RH, Bunge AL. Improved bioequivalence assessment of topical dermatological drug products using dermatopharmacokinetics. Pharm Res. 2009;26(2):316–328. doi: 10.1007/s11095-008-9742-9.
    1. Ng S-F, Rouse JJ, Sanderson FD, Meidan V, Eccleston GM. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech. 2010;11(3):1432–1441. doi: 10.1208/s12249-010-9522-9.
    1. Raney SG, Franz TJ, Lehman PA, Lionberger R, Chen M-L. Pharmacokinetics-based approaches for bioequivalence evaluation of topical dermatological drug products. Clin Pharmacokinet. 2015;54(11):1095–1106. doi: 10.1007/s40262-015-0292-0.
    1. Kreilgaard M, Kemme MJB, Burggraaf J, Schoemaker RC, Cohen AF. Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm Res. 2001;18(5):593–599. doi: 10.1023/A:1011068907416.
    1. Simonsen L, Jørgensen A, Benfeldt E, Groth L. Differentiated in vivo skin penetration of salicylic compounds in hairless rats measured by cutaneous microdialysis. Eur J Pharm Sci. 2004;21(2–3):379–388. doi: 10.1016/j.ejps.2003.11.004.
    1. Kreilgaard M. Assessment of cutaneous drug delivery using microdialysis. Adv Drug Deliv Rev. 2002;54(SUPPL.1):S99–121. doi: 10.1016/S0169-409X(02)00117-5.
    1. García Ortiz P, Hansen SH, Shah VP, Sonne J, Benfeldt E. Are marketed topical metronidazole creams bioequivalent? Evaluation by in vivo microdialysis sampling and tape stripping methodology. Skin Pharmacol Physiol. 2011;24(1):44–53. doi: 10.1159/000320151.
    1. McCleverty D, Lyons R, Henry B. Microdialysis sampling and the clinical determination of topical dermal bioequivalence. Int J Pharm. 2006;308(1–2):1–7. doi: 10.1016/j.ijpharm.2005.09.020.
    1. Tettey-Amlalo RNO, Kanfer I, Skinner MF, Benfeldt E, Verbeeck RK. Application of dermal microdialysis for the evaluation of bioequivalence of a ketoprofen topical gel. Eur J Pharm Sci. 2009;36(2–3):219–225. doi: 10.1016/j.ejps.2008.09.002.
    1. Stagni G, O’Donnell D, Liu YJ, Kellogg DL, Morgan T, Shepherd AMM. Intradermal microdialysis: kinetics of iontophoretically delivered propranolol in forearm dermis. J Control Release. 2000;63(3):331–339. doi: 10.1016/S0168-3659(99)00214-X.
    1. Schwingenschuh S, Scharfetter H, Martinsen OG, Boulgaropoulos B, Augustin T, Tiffner KI, Dragatin C, Raml R, Hoefferer C, Prandl EC, Sinner F, Hajnsek M. Assessment of skin permeability to topically applied drugs by skin impedance and admittance. Physiol Meas. 2017;38(11):N138–N150. doi: 10.1088/1361-6579/aa904e.
    1. Pinnagoda J, Tupker RA, Smit JA, Coenraads PJ, Nater JP. The intra- and inter-individual variability and reliability of transepidermal water loss measurements. Contact Dermatitis. 1989;21(4):255–259. doi: 10.1111/j.1600-0536.1989.tb03205.x.
    1. Møss J. The effect of 3 moisturisers on skin surface hydration. Skin Res Technol. 1996.
    1. Southwell D, Barry BW. Penetration enhancement in human skin; effect of 2-pyrrolidone, dimethylformamide and increased hydration on finite dose permeation of aspirin and caffeine. Int J Pharm. 1984;22:291–298. doi: 10.1016/0378-5173(84)90029-2.
    1. Sjögren F, Anderson C. Sterile trauma to normal human dermis invariably induces IL1beta, IL6 and IL8 in an innate response to “danger”. Acta Derm Venereol [Internet] 2009;89(5):459–465. doi: 10.2340/00015555-0683.
    1. Bodenlenz M, Dragatin C, Liebenberger L, Tschapeller B, Boulgaropoulos B, Augustin T, Raml R, Gatschelhofer C, Wagner N, Benkali K, Rony F, Pieber T, Sinner F. Kinetics of Clobetasol-17-propionate in psoriatic Lesional and non-Lesional skin assessed by dermal open flow microperfusion with time and space resolution. Pharm Res [Internet] 2016;33(9):2229–2238. doi: 10.1007/s11095-016-1960-y.
    1. Skobe M, Detmar M. Structure, function, and molecular control of the skin lymphatic system. J Investig Dermatol Symp Proc [Internet] 2000;5(1):14–19. doi: 10.1046/j.1087-0024.2000.00001.x.
    1. Khan GM, Frum Y, Sarheed O, Eccleston GM, Meidan VM. Assessment of drug permeability distributions in two different model skins. Int J Pharm. 2005;303(1–2):81–87. doi: 10.1016/j.ijpharm.2005.07.005.
    1. Frum Y, Eccleston GM, Meidan VM. Evidence that drug flux across synthetic membranes is described by normally distributed permeability coefficients. Eur J Pharm Biopharm. 2007;67(2):434–439. doi: 10.1016/j.ejpb.2007.03.012.
    1. Frum Y, Khan GM, Sefcik J, Rouse J, Eccleston GM, Meidan VM. Towards a correlation between drug properties and in vitro transdermal flux variability. Int J Pharm. 2007;336(1):140–147. doi: 10.1016/j.ijpharm.2006.11.049.
    1. Meidan VM, Roper CS. Inter- and intra-individual variability in human skin barrier function: a large scale retrospective study. Toxicol Vitr [Internet] 2008;22(4):1062–1069. doi: 10.1016/j.tiv.2008.01.009.
    1. Meidan VM, Pritchard D. A two-layer diffusive model for describing the variability of transdermal drug permeation. Eur J Pharm Biopharm. 2010;74(3):513–517. doi: 10.1016/j.ejpb.2009.12.003.
    1. Ogiso T, Shiraki T, Okajima K, Tanino T, Iwaki M, Wada T. Transfollicular drug delivery: penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J Drug Target. 2002;10(5):369–378. doi: 10.1080/1061186021000001814.
    1. Trauer S, Lademann J, Knorr F, Richter H, Liebsch M, Rozycki C, Balizs G, Büttemeyer R, Linscheid M, Patzelt A. Development of an in vitro modified skin absorption test for the investigation of the follicular penetration pathway of caffeine. Skin Pharmacol Physiol. 2010;23(6):320–327. doi: 10.1159/000313514.
    1. Schaefer H, Lademann J. The role of follicular penetration: a differential view. Skin Pharmacol Appl Ski Physiol. 2001;14(SUPPL. 1):23–27. doi: 10.1159/000056386.
    1. Teichmann A, Otberg N, Jacobi U, Sterry W, Lademann J. Follicular penetration: development of a method to block the follicles selectively against the penetration of topically applied substances. Skin Pharmacol Physiol. 2006;19(4):216–223. doi: 10.1159/000093117.
    1. Patzelt A, Lademann J. Drug delivery to hair follicles. Expert Opin Drug Deliv. 2013;10(6):787–797. doi: 10.1517/17425247.2013.776038.
    1. Frum Y, Bonner MC, Eccleston GM, Meidan VM. The influence of drug partition coefficient on follicular penetration: in vitro human skin studies. Eur J Pharm Sci [Internet] 2007;30(3–4):280–287. doi: 10.1016/j.ejps.2006.11.014.
    1. Barry BW. Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev. 2002;54:31–40. doi: 10.1016/S0169-409X(02)00113-8.
    1. Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122(1):14–19. doi: 10.1046/j.0022-202X.2003.22110.x.
    1. Xu H, Fonseca M, Wolner Z, Chung E, Wu X, Geller S, et al. Reference values for skin microanatomy: A systematic review and meta-analysis of ex vivo studies. J Am Acad Dermatol. 2017;77(6):1133–1144.e4. doi: 10.1016/j.jaad.2017.06.009.

Source: PubMed

3
S'abonner