Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

Frédérique Rau, Jeanne Lainé, Laetitita Ramanoudjame, Arnaud Ferry, Ludovic Arandel, Olivier Delalande, Arnaud Jollet, Florent Dingli, Kuang-Yung Lee, Cécile Peccate, Stéphanie Lorain, Edor Kabashi, Takis Athanasopoulos, Taeyoung Koo, Damarys Loew, Maurice S Swanson, Elisabeth Le Rumeur, George Dickson, Valérie Allamand, Joëlle Marie, Denis Furling, Frédérique Rau, Jeanne Lainé, Laetitita Ramanoudjame, Arnaud Ferry, Ludovic Arandel, Olivier Delalande, Arnaud Jollet, Florent Dingli, Kuang-Yung Lee, Cécile Peccate, Stéphanie Lorain, Edor Kabashi, Takis Athanasopoulos, Taeyoung Koo, Damarys Loew, Maurice S Swanson, Elisabeth Le Rumeur, George Dickson, Valérie Allamand, Joëlle Marie, Denis Furling

Abstract

Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.

Figures

Figure 1. DMD exon 78 MBNL-regulated splicing…
Figure 1. DMD exon 78 MBNL-regulated splicing switch changes dystrophin C-ter tail.
(a) PEP-fold analysis of dystrophin +78 and dystrophin Δ78 C-ter structures. (b) Surface properties of PEP-fold models of dystrophin +78 and dystrophin Δ78 C-ter. Electrostatic potentials (upper panel) are shown in blue for electropositive and red for electronegative. Hydrophobic and hydrophilic surface potentials (lower panel) are coloured in yellow and green, respectively. (c) RT–PCR analysis of DMD exon 78 alternative splicing in human skeletal muscle samples from control (CTL) and congenital DM1 (cDM1) fetuses. (d) Quantification of DMD exon 78 inclusion in skeletal muscle samples from cDM1 compared with control fetuses aged between 20 and 37 weeks of development (n=3). (e) Upper left panel: RT–PCR analysis of endogenous DMD exon 78 inclusion in control differentiated human muscle cells with or without the expression of conditional 960 CTG repeats. Upper right panel: RT–PCR analysis of endogenous DMD exon 78 mRNA in control differentiated human muscle cells transfected with siRNAs against MBNL1 or both MBNL1 and MBNL2. Lower panel: quantification of DMD exon 78 inclusion (n=6 from three independent experiments). (f) RT–PCR analysis and quantification of endogenous Dmd mRNA in skeletal muscle samples from WT, Mbnl1−/− Knockout, Mbnl1−/−, Mbnl2+/− Knockout and myo-CRE muscle-specific Mbnl1−/−, Mbnl2−/− double Knockout (myo-CRE DKO) (n=3). Bars indicates s.e.m. and ** indicates P<0.01; *** indicates P<0.001; Student's t-test).
Figure 2. Exclusion of dmd exon 78…
Figure 2. Exclusion of dmd exon 78 in zebrafish impairs skeletal muscle development.
(a) RT–PCR of dmd exon 78 performed on total RNA extracts isolated from whole control and dmd Δ78 embryos (48 hpf). (b) Dose-dependant phenotype of dmd Δ78 embryos: control embryos (CTL) compared with moderate and severe affected dmd Δ78 morphants at 48 hpf (scale bar, 1 mm). (c) Touch-evoked escape test of control embryos compared with moderate and severe dmd Δ78 morphants (1 image/0.2 s; scale bar, 1 mm). (d) Abnormal myoseptum U-shape in dmd Δ78 morphants compared with V-shape in control embryos at 48 hpf (scale bar, 250 and 100 μm). (e) Dystrophin immunostaining (MANDRA1 antibody) of control embryos compared with dmd Δ78 morphants at 48 hpf. (f) Slow myosin immunostaining of control embryos compared with moderate and severe affected dmd Δ78 morphants at 48 hpf (scale bar, 50 and 10 μm).
Figure 3. μ-dystrophin with a 31aa C-ter…
Figure 3. μ-dystrophin with a 31aa C-ter tail fails to ameliorate mdx muscle phenotype.
(a) Dystrophin N-terminal domain (Manex1011B antibody), dystrophin C-terminus domain (Dys2 antibody), α-sarcoglycan, α-syntrophin and α-dystrobrevin immunostaining of mdx4cv TA muscles injected with saline, AAV2/9-μDys-CTL or AAV2/9-μDys-Δex78 (scale bar, 50 μm). (b,e) TA muscle weight of C57BL/6 control mice (C57, n=8) compared with TA muscles of mdx4cv mice (n=8) injected with saline (mdx4cv) or AAV2/9-μDys-CTL (b) or AAV2/9-μDys-Δex78 (e). (c,f) Specific maximal force (sP0) of TA muscles of C57BL/6 control mice (C57, n=8) compared with TA muscles of mdx4cv mice (n=8) injected with saline (mdx4cv) or AAV2/9-μDys-CTL (c) or AAV2/9-μDys-Δex78 (f). (d,g) Resistance to eccentric contractions. Absolute maximal force (P0) following lengthening contractions of TA muscles of C57BL/6 control mice (C57, n=8) compared with TA muscles of mdx4cv mice (n=8) injected with saline (mdx4cv) or AAV2/9-μDys-CTL (d) or AAV2/9-μDys-Δex78 (g). Bars indicate s.e.m. and ‘NS' indicates not significant; * indicates P<0.05; ** indicates P<0.01 compared to mdx4cv condition; one-way analysis of variance with Tukey's multiple comparisons test.
Figure 4. Dystrophin exon 78 is required…
Figure 4. Dystrophin exon 78 is required for muscle structure maintenance.
(a) RT–PCR analysis and quantification of Dmd exon 78 inclusion in TA muscles (n=10) injected with AAV-U7-Dmd-ex78 compared with contralateral TA muscles injected with saline (CTL). (b) Hematoxylin and eosin staining in TA muscles injected either with saline (CTL) or AAV-U7-Dmd-ex78 (scale bar, 50 μm). Inset: higher magnification (× 2.5) of a structure reminiscent of ringed fibre shown by the arrow. (c) Fibre types in TA muscles injected either with saline (CTL) or AAV-U7-Dmd-ex78 were determined by MyHC immunostaining: MyHC-IIa in red, MyHC-IIx in blue, MyHC-IIb dark, laminin in green. Purple fibres correspond to MyHC-IIa and MyHC-IIx positive fibres (scale bar, 100 μm). (d) Quantification of MyHC mRNA levels by quantitative RT–PCR (n=10). Bars indicate s.e.m. and ‘NS' indicates not significant; *** indicates P<0.001; Student's t-test). (e) Ultrastructure of representative, longitudinally cut, fibres in AAV-U7-Dmd-ex78-injected TA. Upper panel: ‘ringed fibre'. Sarcomeres are mainly longitudinally oriented, but just under the sarcolemma, a band of myofibrils (pseudo-coloured in green) is transversally oriented as evidenced in the enlarged zone (N, nucleus; M, mitochondria). Lower panel: sarcoplasmic mass. The sarcoplasm beneath its sarcolemma appears nearly devoid of myofilaments and the higher magnification shows some electrodense remnants of Z line material and vacuoles of swollen sarcoplasmic reticulum. In addition focal zones with Z line streaming are also observed in fibres of AAV-U7-Dmd-ex78-injected muscles (arrows in left panels). Left panels scale bars, 5 μm and rigth panels scale bars, 1 μm.

References

    1. Brook J. D. et al.. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member. Cell 69, 385 (1992).
    1. Fu Y. H. et al.. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 255, 1256–1258 (1992).
    1. Mahadevan M. et al.. Myotonic dystrophy mutation: an unstable CTG repeat in the 3' untranslated region of the gene. Science 255, 1253–1255 (1992).
    1. Kanadia R. N. et al.. A muscleblind knockout model for myotonic dystrophy. Science 302, 1978–1980 (2003).
    1. Kanadia R. N. et al.. Developmental expression of mouse muscleblind genes Mbnl1, Mbnl2 and Mbnl3. Gene Expr. Patterns 3, 459–462 (2003).
    1. Kuyumcu-Martinez N. M., Wang G. S. & Cooper T. A. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol. Cell 28, 68–78 (2007).
    1. Mankodi A. et al.. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 289, 1769–1773 (2000).
    1. Miller J. W. et al.. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 19, 4439–4448 (2000).
    1. Philips A. V., Timchenko L. T. & Cooper T. A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280, 737–741 (1998).
    1. Seznec H. et al.. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum. Mol. Genet. 9, 1185–1194 (2000).
    1. Charlet B. N. et al.. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10, 45–53 (2002).
    1. Fugier C. et al.. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat. Med. 17, 720–725 (2011).
    1. Savkur R. S., Philips A. V. & Cooper T. A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat. Genet. 29, 40–47 (2001).
    1. Tang Z. Z. et al.. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of CaV1.1 calcium channel. Hum. Mol. Genet. 21, 1312–1324 (2012).
    1. Wheeler T. M., Lueck J. D., Swanson M. S., Dirksen R. T. & Thornton C. A. Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy. J. Clin. Invest. 117, 3952–3957 (2007).
    1. Gao Z. & Cooper T. A. Reexpression of pyruvate kinase M2 in type 1 myofibers correlates with altered glucose metabolism in myotonic dystrophy. Proc. Natl. Acad. Sci. U. S. A. 110, 13570–13575 (2013).
    1. Nakamori M., Kimura T., Fujimura H., Takahashi M. P. & Sakoda S. Altered mRNA splicing of dystrophin in type 1 myotonic dystrophy. Muscle Nerve 36, 251–257 (2007).
    1. Nakamori M. et al.. Splicing biomarkers of disease severity in myotonic dystrophy. Ann. Neurol. 74, 862–872 (2013).
    1. Gumerson J. D. & Michele D. E. The dystrophin-glycoprotein complex in the prevention of muscle damage. Biomed. Res. Int. 2011, 210797 (2011).
    1. Johnson E. K. et al.. Identification of new dystroglycan complexes in skeletal muscle. PLoS ONE 8, e73224 (2013).
    1. Hoffman E. P., Brown R. H. Jr. & Kunkel L. M. Dystrophin: the protein product of the duchenne muscular dystrophy locus. Cell 51, 919–928 (1987).
    1. Koenig M. et al.. Complete cloning of the duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).
    1. Austin R. C., Howard P. L., D'Souza V. N., Klamut H. J. & Ray P. N. Cloning and characterization of alternatively spliced isoforms of Dp71. Hum. Mol. Genet. 4, 1475–1483 (1995).
    1. Austin R. C., Morris G. E., Howard P. L., Klamut H. J. & Ray P. N. Expression and synthesis of alternatively spliced variants of Dp71 in adult human brain. Neuromuscul. Disord. 10, 187–193 (2000).
    1. Feener C. A., Koenig M. & Kunkel L. M. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511 (1989).
    1. Crawford G. E. et al.. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J. Cell Biol. 150, 1399–1410 (2000).
    1. Bies R. D. et al.. Human and murine dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart, and brain development. Nucleic Acids Res. 20, 1725–1731 (1992).
    1. Greener M. J., Sewry C. A., Muntoni F. & Roberts R. G. The 3'-untranslated region of the dystrophin gene - conservation and consequences of loss. Eur. J. Hum. Genet. 10, 413–420 (2002).
    1. Laurent F.-X. et al.. New function for the RNA helicase p68/DDX5 as a modifier of MBNL1 activity on expanded CUG repeats. Nucleic Acids Res. 40, 3159–3171 (2012).
    1. Lee K.-Y. et al.. Compound loss of muscleblind-like function in myotonic dystrophy. EMBO Mol. Med. 5, 1887–1900 (2013).
    1. Ward A. J., Rimer M., Killian J. M., Dowling J. J. & Cooper T. A. CUGBP1 overexpression in mouse skeletal muscle reproduces features of myotonic dystrophy type 1. Hum. Mol. Genet. 19, 3614–3622 (2010).
    1. Jin H. et al.. The dystrotelin, dystrophin and dystrobrevin superfamily: new paralogues and old isoforms. BMC Genomics 8, 19 (2007).
    1. Bassett D. I. et al.. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Dev. Camb. Engl. 130, 5851–5860 (2003).
    1. Berger J., Berger S., Hall T. E., Lieschke G. J. & Currie P. D. Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscul. Disord. 20, 826–832 (2010).
    1. Athanasopoulos T., Graham I. R., Foster H. & Dickson G. Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther. 11, (Suppl 1): S109–S121 (2004).
    1. Athanasopoulos T., Foster H., Foster K. & Dickson G. Codon optimization of the microdystrophin gene for Duchene muscular dystrophy gene therapy. Methods Mol. Biol. 709, 21–37 (2011).
    1. Foster H. et al.. Codon and mRNA sequence optimization of microdystrophin transgenes improves expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol. Ther. J. Am. Soc. Gene Ther. 16, 1825–1832 (2008).
    1. Gregorevic P. et al.. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat. Med. 12, 787–789 (2006).
    1. Koo T. et al.. Delivery of AAV2/9-microdystrophin genes incorporating helix 1 of the coiled-coil motif in the C-terminal domain of dystrophin improves muscle pathology and restores the level of α1-syntrophin and α-dystrobrevin in skeletal muscles of mdx mice. Hum. Gene Ther. 22, 1379–1388 (2011).
    1. Koo T. et al.. Long-term functional adeno-associated virus-microdystrophin expression in the dystrophic CXMDj dog. J. Gene Med. 13, 497–506 (2011).
    1. Lai Y. et al.. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J. Clin. Invest. 119, 624–635 (2009).
    1. Suzuki A., Yoshida M. & Ozawa E. Mammalian alpha 1- and beta 1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus. J. Cell Biol. 128, 373–381 (1995).
    1. Sadoulet-Puccio H. M., Rajala M. & Kunkel L. M. Dystrobrevin and dystrophin: an interaction through coiled-coil motifs. Proc. Natl Acad. Sci. USA 94, 12413–12418 (1997).
    1. Roberts R. G. & Bobrow M. Dystrophins in vertebrates and invertebrates. Hum. Mol. Genet. 7, 589–595 (1998).
    1. Brooke M. H. & Engel W. K. The histographic analysis of human muscle biopsies with regard to fiber types. 3. Myotonias, myasthenia gravis, and hypokalemic periodic paralysis. Neurology 19, 469–477 (1969).
    1. Harper P. S. Myotonic Dystrophy W.B. Saunders (2001).
    1. Schroder J. M. & Adams R. D. The ultrastructural morphology of the muscle fiber in myotonic dystrophy. Acta Neuropathol. 10, 218–241 (1968).
    1. Thévenet P. et al.. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res. 40, W288–W293 (2012).
    1. Baker N. A., Sept D., Joseph S., Holst M. J. & McCammon J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).
    1. Pyrkov T. V., Chugunov A. O., Krylov N. A., Nolde D. E. & Efremov R. G. PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25, 1201–1202 (2009).
    1. Furling D. et al.. Defective satellite cells in congenital myotonic dystrophy. Hum. Mol. Genet. 10, 2079–2087 (2001).

Source: PubMed

3
S'abonner