Molecular evolution of plasminogen activator inhibitor-1 functional stability

M B Berkenpas, D A Lawrence, D Ginsburg, M B Berkenpas, D A Lawrence, D Ginsburg

Abstract

Plasminogen activator inhibitor-1 (PAI-1) is a member of the serine protease inhibitor (serpin) supergene family and a central regulatory protein in the blood coagulation system. PAI-1 is unique among serpins in exhibiting distinct active and inactive (latent) conformations in vivo. Though the structure of latent PAI-1 was recently solved, the structure of the short-lived, active form of PAI-1 is not known. In order to probe the structural basis for this unique conformational change, a randomly mutated recombinant PAI-1 expression library was constructed in bacteriophage and screened for increased functional stability. Fourteen unique clones were selected, and shown to exhibit functional half-lives (T1/2S) exceeding that of wild-type PAI-1 by up to 72-fold. The most stable variant (T1/2 = 145 h) contained four mutations. Detailed analysis of these four mutations, individually and in combination, demonstrated that the markedly enhanced functional stability of the parent compound mutant required contributions from all four substitutions, with no individual T1/2 exceeding 6.6 h. The functional stability of at least eight of the remaining 13 compound mutants also required interactions between two or more amino acid substitutions, with no single variant increasing the T1/2 by > 10-fold. The nature of the identified mutations implies that the unique instability of the PAI-1 active conformation evolved through global changes in protein packing and suggest a selective advantage for transient inhibitor function.

References

    1. Nature. 1994 Jul 7;370(6484):14-5
    1. J Biol Chem. 1994 Jun 10;269(23):15957-60
    1. Science. 1994 Aug 19;265(5175):1032-3
    1. Structure. 1994 Apr 15;2(4):257-70
    1. Hum Genet. 1994 Nov;94(5):509-12
    1. J Biol Chem. 1994 Nov 4;269(44):27657-62
    1. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452-6
    1. J Biol Chem. 1995 Apr 21;270(16):9301-6
    1. Nat Struct Biol. 1995 Feb;2(2):96-113
    1. Nat Struct Biol. 1994 Jan;1(1):48-54
    1. Nat Struct Biol. 1994 Apr;1(4):251-8
    1. J Mol Biol. 1984 Aug 15;177(3):531-57
    1. Biochemistry. 1987 Nov 3;26(22):6885-8
    1. Nature. 1988 Aug 4;334(6181):406-10
    1. J Biol Chem. 1988 Oct 25;263(30):15454-61
    1. Eur J Biochem. 1989 Dec 22;186(3):523-33
    1. J Mol Biol. 1990 Mar 20;212(2):295-318
    1. Nature. 1990 Sep 6;347(6288):99-102
    1. J Biol Chem. 1990 Nov 25;265(33):20293-301
    1. Nature. 1991 Mar 14;350(6314):121-4
    1. Science. 1991 Jul 5;253(5015):54-8
    1. J Clin Invest. 1991 Oct;88(4):1067-72
    1. Nature. 1991 Oct 10;353(6344):576-8
    1. Nature. 1992 Jan 16;355(6357):270-3
    1. J Biol Chem. 1992 Apr 15;267(11):7588-95
    1. N Engl J Med. 1992 Dec 10;327(24):1729-33
    1. PCR Methods Appl. 1992 Aug;2(1):28-33
    1. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5618-22
    1. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8367-71
    1. J Clin Invest. 1993 Dec;92(6):2756-60
    1. Nature. 1994 Mar 31;368(6470):419-24
    1. Biochemistry. 1994 Mar 29;33(12):3643-8
    1. J Biol Chem. 1994 Apr 1;269(13):9627-31
    1. FEBS Lett. 1994 May 16;344(2-3):117-24
    1. J Biol Chem. 1994 May 27;269(21):15223-8
    1. Nature. 1994 Aug 4;370(6488):389-91

Source: PubMed

3
S'abonner