The effect of spironolactone on calcineurin inhibitor induced nephrotoxicity: a multicenter randomized, double-blind, clinical trial (the SPIREN trial)

Line Aas Mortensen, Helle C Thiesson, Birgitte Tougaard, Martin Egfjord, Anne Sophie Lind Fischer, Claus Bistrup, Line Aas Mortensen, Helle C Thiesson, Birgitte Tougaard, Martin Egfjord, Anne Sophie Lind Fischer, Claus Bistrup

Abstract

Background: Calcineurin inhibitor induced nephrotoxicity contributes to late allograft failure in kidney transplant patients. Evidence points towards aldosterone to play a role in the development of fibrosis in multiple organs. Animal studies have indicated a beneficial effect of mineralocorticoid receptor antagonists preventing calcineurin inhibitor induced nephrotoxicity. Only few studies have explored this effect in humans. The objective of this study is to evaluate the effect of spironolactone on glomerular filtration rate and fibrosis in kidney transplant patients.

Method: Prospective, double-blind, randomized, clinical trial including 170 prevalent kidney transplant patients. Patients are randomized to spironolactone 25-50 mg/day or placebo for three years. Primary outcome is glomerular filtration rate evaluated by chrome-EDTA clearance. Secondary outcomes are 24-h protein excretion, amount of interstitial fibrosis in renal allograft biopsies, and cardiovascular events. As an exploratory outcome, we aim to identify markers of fibrosis in blood and urine.

Discussion: Long term allograft survival remains a key issue in renal transplantation, partly due to calcineurin inhibitor induced nephrotoxicity. Evidence from animal- and small human studies indicate a beneficial effect of mineralocorticoid receptor antagonism on renal function and fibrosis. This study aims to test this hypothesis in a sufficiently powered randomized clinical trial. Results might influence the future management of long term allograft survival in renal transplantation.

Trial registration: ClinicalTrials.gov identifier (05/17/2012): NCT01602861 . EudraCT number (05/31/2011): 2011-002243-98.

Keywords: Aldosterone; Cyclosporine A; Fibrosis; Glomerular filtration rate; IFTA; Kidney transplantation; Mineralocorticoid; Tacrolimus.

Conflict of interest statement

Ethics approval and consent to participate

The SPIREN trial has been approved by the Research Ethics Committee of Southern Denmark on the 24th of August 2011 (project ID: s-20110095, protocol version 2 (07/28/2011)). Oral and written informed consent to participation is obtained from all study participants by study personnel prior to any study related procedure. All participants receive both written and oral information about the study before giving consent. The trial is conducted according to the standards of Good Clinical Practice (GCP) and undergoes continuous monitoring by local GCP representatives.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Participant timeline

References

    1. Calne RY, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, et al. Cyclosporin a in patients receiving renal allografts from cadaver donors. Lancet. 1978;2:1323–1327. doi: 10.1016/S0140-6736(78)91970-0.
    1. Starzl TE, Todo S, Fung J, Demetris AJ, Venkataramman R, Jain A. FK 506 for liver, kidney, and pancreas transplantation. Lancet. 1989;2:1000–1004. doi: 10.1016/S0140-6736(89)91014-3.
    1. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4:481–508.
    1. Nankivell BJ, Borrows RJ, Fung CL, O'Connell PJ, Chapman JR, Allen RD. Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation. 2004;78:557–565. doi: 10.1097/01.TP.0000128636.70499.6E.
    1. Nankivell BJ, P’Ng CH, O'Connell PJ, Chapman JR. Calcineurin inhibitor nephrotoxicity through the Lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras. Transplantation. 2016;100:1723–1731. doi: 10.1097/TP.0000000000001243.
    1. Jaisser F, Farman N. Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol Rev. 2016;68:49–75. doi: 10.1124/pr.115.011106.
    1. Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013;9:459–469. doi: 10.1038/nrneph.2013.110.
    1. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone evaluation study investigators. N Engl J Med. 1999;341:709–717. doi: 10.1056/NEJM199909023411001.
    1. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–1321. doi: 10.1056/NEJMoa030207.
    1. Richards AM, Nicholls MG. Aldosterone antagonism in heart failure. Lancet. 1999;354:789–790. doi: 10.1016/S0140-6736(99)80003-8.
    1. Bolignano D, Palmer SC, Navaneethan SD, Strippoli GFM. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014;(4):CD007004. doi:10.1002/14651858.CD007004.pub3.
    1. Perez-Rojas JM, Derive S, Blanco JA, Cruz C, Martinez de la Maza L, Gamba G, et al. Renocortical mRNA expression of vasoactive factors during spironolactone protective effect in chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol. 2005;289:F1020–F1030. doi: 10.1152/ajprenal.00166.2005.
    1. Nielsen FT, Jensen BL, Marcussen N, Skott O, Bie P. Inhibition of mineralocorticoid receptors with eplerenone alleviates short-term cyclosporin a nephrotoxicity in conscious rats. Nephrol Dial Transplant. 2008;23:2777–2783. doi: 10.1093/ndt/gfn204.
    1. McAuley FT, Whiting PH, Thomson AW, Simpson JG. The influence of enalapril or spironolactone on experimental cyclosporin nephrotoxicity. Biochem Pharmacol. 1987;36:699–703. doi: 10.1016/0006-2952(87)90721-0.
    1. Feria I, Pichardo I, Juarez P, Ramirez V, Gonzalez MA, Uribe N, et al. Therapeutic benefit of spironolactone in experimental chronic cyclosporine a nephrotoxicity. Kidney Int. 2003;63:43–52. doi: 10.1046/j.1523-1755.2003.00707.x.
    1. Perez-Rojas J, Blanco JA, Cruz C, Trujillo J, Vaidya VS, Uribe N, et al. Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol. 2007;292:F131–F139. doi: 10.1152/ajprenal.00147.2006.
    1. Macunluoglu B, Arikan H, Atakan A, Tuglular S, Ulfer G, Cakalagaoglu F, et al. Effects of spironolactone in an experimental model of chronic cyclosporine nephrotoxicity. Transplant Proc. 2008;40:273–278. doi: 10.1016/j.transproceed.2007.11.025.
    1. Nielsen FT, Jensen BL, Hansen PB, Marcussen N, Bie P. The mineralocorticoid receptor antagonist eplerenone reduces renal interstitial fibrosis after long-term cyclosporine treatment in rat: antagonizing cyclosporine nephrotoxicity. BMC Nephrol. 2013;14:42. doi: 10.1186/1471-2369-14-42.
    1. Medeiros M, Velasquez-Jones L, Hernandez AM, Ramon-Garcia G, Valverde S, Fuentes Y, et al. Randomized controlled trial of mineralocorticoid receptor blockade in children with chronic kidney allograft nephropathy. Clin J Am Soc Nephrol. 2017;12:1291–1300. doi: 10.2215/CJN.05300516.
    1. Gonzalez Monte E, Andres A, Polanco N, Toribio MJ, Santana R, Gutierrez Martinez E, et al. Addition of spironolactone to dual blockade of renin angiotensin system dramatically reduces severe proteinuria in renal transplant patients: an uncontrolled pilot study at 6 months. Transplant Proc. 2010;42:2899–2901. doi: 10.1016/j.transproceed.2010.08.024.
    1. de Sousa MV, Guida JP, do Valle CF, Camargo LF, Rivelli GG, Mazzali M. Spironolactone in post-transplant proteinuria: a safe alternative therapy. Transplant Proc. 2017;49:813–816. doi: 10.1016/j.transproceed.2017.01.075.
    1. Ojeda-Cervantes M, Barrera-Chimal J, Alberu J, Perez-Villalva R, Morales-Buenrostro LE, Bobadilla NA. Mineralocorticoid receptor blockade reduced oxidative stress in renal transplant recipients: a double-blind, randomized pilot study. Am J Nephrol. 2013;37:481–490. doi: 10.1159/000350539.
    1. Marcen R, Morales JM, Fernandez-Rodriguez A, Capdevila L, Pallardo L, Plaza JJ, et al. Long-term graft function changes in kidney transplant recipients. NDT Plus. 2010;3:ii2–ii8.
    1. Gill JS, Tonelli M, Mix CH, Pereira BJ. The change in allograft function among long-term kidney transplant recipients. J Am Soc Nephrol. 2003;14:1636–1642. doi: 10.1097/01.ASN.0000070621.06264.86.
    1. Kasiske BL, Gaston RS, Gourishankar S, Halloran PF, Matas AJ, Jeffery J, et al. Long-term deterioration of kidney allograft function. Am J Transplant. 2005;5:1405–1414. doi: 10.1111/j.1600-6143.2005.00853.x.
    1. Gera M, Slezak JM, Rule AD, Larson TS, Stegall MD, Cosio FG. Assessment of changes in kidney allograft function using creatinine-based estimates of glomerular filtration rate. Am J Transplant. 2007;7:880–887. doi: 10.1111/j.1600-6143.2006.01690.x.
    1. Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS, British Nuclear Medicine S. Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun. 2004;25:759–769. doi: 10.1097/01.mnm.0000136715.71820.4a.
    1. Ellingsen AR, Nyengaard JR, Osterby R, Jorgensen KA, Petersen SE, Marcussen N. Measurements of cortical interstitium in biopsies from human kidney grafts: how representative and how reproducible? Nephrol Dial Transplant. 2002;17:788–792. doi: 10.1093/ndt/17.5.788.
    1. Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7:684–696. doi: 10.1038/nrneph.2011.149.
    1. Mortensen LA, Bistrup C, Thiesson HC. Does mineralocorticoid receptor antagonism prevent Calcineurin inhibitor-induced nephrotoxicity? Frontiers in Medicine. 2017;4:210. doi: 10.3389/fmed.2017.00210.
    1. Mortensen L, Bistrup C, Nielsen FT, Halekoh U, Jensen BL, Marcussen N, et al. The effect of spironolactone on calcineurininhibitor induced nephrotoxicity. Am J transplant journal translated name. Am J Transplant. 2016;16:486.
    1. Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, et al. Rates of hyperkalemia after publication of the randomized Aldactone evaluation study. N Engl J Med. 2004;351:543–551. doi: 10.1056/NEJMoa040135.
    1. Bertocchio JP, Barbe C, Lavaud S, Toupance O, Nazeyrollas P, Jaisser F, et al. Safety of Eplerenone for kidney-transplant recipients with impaired renal function and receiving cyclosporine a. PLoS One. 2016;11:e0153635. doi: 10.1371/journal.pone.0153635.
    1. Boesby L, Elung-Jensen T, Klausen TW, Strandgaard S, Kamper AL. Moderate antiproteinuric effect of add-on aldosterone blockade with eplerenone in non-diabetic chronic kidney disease. A randomized cross-over study. PLoS One. 2011;6:e26904. doi: 10.1371/journal.pone.0026904.
    1. Vardeny O, Wu DH, Desai A, Rossignol P, Zannad F, Pitt B, et al. Influence of baseline and worsening renal function on efficacy of spironolactone in patients with severe heart failure: insights from RALES (randomized Aldactone evaluation study) J Am Coll Cardiol. 2012;60:2082–2089. doi: 10.1016/j.jacc.2012.07.048.

Source: PubMed

3
S'abonner