Effects of Traumeel (Tr14) on Exercise-Induced Muscle Damage Response in Healthy Subjects: A Double-Blind RCT

Kerstin Muders, Christian Pilat, Vanessa Deuster, Torsten Frech, Karsten Krüger, Jörn Pons-Kühnemann, Frank-Christoph Mooren, Kerstin Muders, Christian Pilat, Vanessa Deuster, Torsten Frech, Karsten Krüger, Jörn Pons-Kühnemann, Frank-Christoph Mooren

Abstract

The present double-blind, randomized, placebo-controlled clinical trial intended to test whether ingestion of a natural combination medicine (Tr14 tablets) affects serum muscle damage and inflammatory immune response after downhill running. 96 male subjects received Tr14 tablets, which consist of 14 diluted biological and mineral components, or a placebo for 72 h after the exercise test, respectively. Changes in postexercise levels of various serum muscle damage and immunological markers were investigated. The area under the curve with respect to the increase (AUCi) of perceived pain score and creatine kinase (CK) were defined as primary outcome measures. While for CK the p value of the difference between the two groups is borderline, the pain score and muscle strength were not statistically significant. However, a trend towards lower levels of muscle damage (CK, p = 0.05; LDH, p = 0.06) in the Tr14 group was shown. Less pronounced lymphopenia (p = 0.02), a trend towards a lower expression of CD69 count (p = 0.07), and antigen-stimulated ICAM-1 (p = 0.01) were found in the verum group. The Tr14 group showed a tendentially lower increase of neutrophils (p = 0.10), BDNF (p = 0.03), stem cell factor (p = 0.09), and GM-CSF (p = 0.09) to higher levels. The results of the current study indicate that Tr14 seems to limit exercise-induced muscle damage most likely via attenuation of both innate and adaptive immune responses. This study was registered with ClinicalTrials.gov (NCT01912469).

Figures

Figure 1
Figure 1
Study flow chart. 110 subjects were assessed for eligibility in the clinical trial and thereof 96 subjects were randomized. There was one dropout in the placebo group.
Figure 2
Figure 2
Experimental design. The figure shows the different time points of data collection. On day one, the data collection was performed immediately before, immediately after, and three hours after exercise (45 min downhill running). Follow-up visits were performed 24 h, 48 h, and 72 h after exercise. The intake of the study medication started directly after exercise.

References

    1. Walsh N. P., Gleeson M., Shephard R. J., et al. Position statement part one: immune function and exercise. Exercise Immunology Review. 2011;17:6–63.
    1. Armstrong R. B. Mechanisms of exercise-induced delayed onset muscular soreness: a brief review. Medicine and Science in Sports and Exercise. 1984;16(6):529–538.
    1. MacIntyre D. L., Reid W. D., McKenzie D. C. Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Medicine. 1995;20(1):24–40. doi: 10.2165/00007256-199520010-00003.
    1. Pyne D. B. Exercise-induced muscle damage and inflammation: a review. Australian Journal of Science and Medicine in Sport. 1994;26(3-4):49–58.
    1. Fridén J., Sjöström M., Ekblom B. Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine. 1983;4(3):170–176. doi: 10.1055/s-2008-1026030.
    1. Fridén J., Lieber R. L. Structural and mechanical basis of exercise-induced muscle injury. Medicine and Science in Sports and Exercise. 1992;24(5):521–529.
    1. Peake J. M., Suzuki K., Wilson G., et al. Exercise-induced muscle damage, plasma cytokines, and markers of neutrophil activation. Medicine and Science in Sports and Exercise. 2005;37(5):737–745. doi: 10.1249/01.mss.0000161804.05399.3b.
    1. Suzuki K., Nakaji S., Yamada M., Totsuka M., Sato K., Sugawara K. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exercise Immunology Review. 2002;8:6–48.
    1. Donnelly A. E., Maughan R. J., Whiting P. H. Effects of ibuprofen on exercise-induced muscle soreness and indices of muscle damage. British Journal of Sports Medicine. 1990;24(3):191–195. doi: 10.1136/bjsm.24.3.191.
    1. Nieman D. C., Henson D. A., Dumke C. L., et al. Ibuprofen use, endotoxemia, inflammation, and plasma cytokines during ultramarathon competition. Brain, Behavior, and Immunity. 2006;20(6):578–584. doi: 10.1016/j.bbi.2006.02.001.
    1. Theodorou A. A., Nikolaidis M. G., Paschalis V., et al. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. American Journal of Clinical Nutrition. 2011;93(6):1373–1383. doi: 10.3945/ajcn.110.009266.
    1. Lund H., Vestergaard-Poulsen P., Kanstrup I.-L., Sejrsen P. The effect of passive stretching on delayed onset muscle soreness, and other detrimental effects following eccentric exercise. Scandinavian Journal of Medicine and Science in Sports. 1998;8(4):216–221.
    1. Crystal N. J., Townson D. H., Cook S. B., Laroche D. P. Effect of cryotherapy on muscle recovery and inflammation following a bout of damaging exercise. European Journal of Applied Physiology. 2013;113(10):2577–2586. doi: 10.1007/s00421-013-2693-9.
    1. Hasson S. M., Daniels J. C., Divine J. G., et al. Effect of ibuprofen use on muscle soreness, damage, and performance: a preliminary investigation. Medicine and Science in Sports and Exercise. 1993;25(1):9–17. doi: 10.1249/00005768-199301000-00003.
    1. O'Grady M., Hackney A. C., Schneider K., et al. Diclofenac sodium (Voltaren) reduced exercise-induced injury in human skeletal muscle. Medicine and Science in Sports and Exercise. 2000;32(7):1191–1196. doi: 10.1097/00005768-200007000-00001.
    1. Hernández-Díaz S., García-Rodríguez L. A. Epidemiologic assessment of the safety of conventional nonsteroidal anti-inflammatory drugs. American Journal of Medicine. 2001;110(supplement 3):20S–27S.
    1. Srivastava J. K., Pandey M., Gupta S. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sciences. 2009;85(19-20):663–669. doi: 10.1016/j.lfs.2009.09.007.
    1. Raso G. M., Pacilio M., Di Carlo G., Esposito E., Pinto L., Meli R. In-vivo and in-vitro anti-inflammatory effect of Echinacea purpurea and Hypericum perforatum. Journal of Pharmacy and Pharmacology. 2002;54(10):1379–1383. doi: 10.1211/002235702760345464.
    1. González de Vega C., Speed C., Wolfarth B., González J. Traumeel vs. diclofenac for reducing pain and improving ankle mobility after acute ankle sprain: a multicentre, randomised, blinded, controlled and non-inferiority trial. International Journal of Clinical Practice. 2013;67(10):979–989. doi: 10.1111/ijcp.12219.
    1. Pilat C., Frech T., Wagner A., et al. Exploring effects of a natural combination medicine on exercise-induced inflammatory immune response: a double-blind RCT. Scandinavian Journal of Medicine and Science in Sports. 2015;25(4):534–542. doi: 10.1111/sms.12265.
    1. Toliopoulos I. K., Simos Y., Bougiouklis D., Oikonomidis S. Stimulation of natural killer cells by homoeopathic complexes: an in vitro and in vivo pilot study in advanced cancer patients. Cell Biochemistry and Function. 2013;31(8):713–718. doi: 10.1002/cbf.2960.
    1. Lussignoli S., Bertani S., Metelmann H., Bellavite P., Conforti A. Effect of Traumeel S®, a homeopathic formulation, on blood induced inflammation in rats. Complementary Therapies in Medicine. 1999;7(4):225–230. doi: 10.1016/s0965-2299(99)80006-5.
    1. Oberbaum M., Spira R. M., Lukasiewicz E., et al. Effect of traumeel S on cytokine profile in a cecal ligation and puncture (CLP) sepsis model in rats. Journal of Alternative and Complementary Medicine. 2011;17(10):909–913. doi: 10.1089/acm.2011.0205.
    1. Porozov S., Cahalon L., Weiser M., Branski D., Lider O., Oberbaum M. Inhibition of IL-1β and TNF-α secretion from resting and activated human immunocytes by the homeopathic medication Traumeel® S. Clinical and Developmental Immunology. 2004;11(2):143–149. doi: 10.1080/10446670410001722203.
    1. Schneider C. Traumeel—an emerging option to nonsteroidal anti-inflammatory drugs in the management of acute musculoskeletal injuries. International Journal of General Medicine. 2011;4:225–234. doi: 10.2147/ijgm.s16709.
    1. Mooren F. C., Lechtermann A., Völker K. Exercise-induced apoptosis of lymphocytes depends on training status. Medicine and Science in Sports and Exercise. 2004;36(9):1476–1483. doi: 10.1249/01.MSS.0000139897.34521.E9.
    1. Melzack R. The short-form McGill pain questionnaire. Pain. 1987;30(2):191–197. doi: 10.1016/0304-3959(87)91074-8.
    1. Pruessner J. C., Kirschbaum C., Meinlschmid G., Hellhammer D. H. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 2003;28(7):916–931. doi: 10.1016/S0306-4530(02)00108-7.
    1. Damas F., Nosaka K., Libardi C., Chen T., Ugrinowitsch C. Susceptibility to exercise-induced muscle damage: a cluster analysis with a large sample. International Journal of Sports Medicine. 2016 doi: 10.1055/s-0042-100281.
    1. Margaritelis N. V., Kyparos A., Paschalis V., et al. Reductive stress after exercise: the issue of redox individuality. Redox Biology. 2014;2(1):520–528. doi: 10.1016/j.redox.2014.02.003.
    1. Plezbert J. A., Burke J. R. Effects of the homeopathic remedy arnica on attenuating symptoms of exercise-induced muscle soreness. Journal of Chiropractic Medicine. 2005;4(3):152–161. doi: 10.1016/S0899-3467(07)60124-4.
    1. Pumpa K. L., Fallon K. E., Bensoussan A., Papalia S. The effects of topical Arnica on performance, pain and muscle damage after intense eccentric exercise. European Journal of Sport Science. 2014;14(3):294–300. doi: 10.1080/17461391.2013.829126.
    1. Koch A. J., Pereira R., Machado M. The creatine kinase response to resistance exercise. Journal of Musculoskeletal Neuronal Interactions. 2014;14(1):68–77.
    1. Machado M., Pereira R., Willardson J. M. Short intervals between sets and individuality of muscle damage response. Journal of Strength and Conditioning Research. 2012;26(11):2946–2952. doi: 10.1519/JSC.0b013e318243fdb5.
    1. Kim J., Lee J. The relationship of creatine kinase variability with body composition and muscle damage markers following eccentric muscle contractions. The Journal of Exercise Nutrition and Biochemistry. 1975;6(1):123–129. doi: 10.5717/jenb.2015.19.2.123.
    1. Paulsen G., Mikkelsen U. R., Raastad T., Peake J. M. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exercise Immunology Review. 2012;18:42–97.
    1. Peake J., Nosaka K., Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exercise Immunology Review. 2005;11:64–85.
    1. Krüger K., Lechtermann A., Fobker M., Völker K., Mooren F. C. Exercise-induced redistribution of T lymphocytes is regulated by adrenergic mechanisms. Brain, Behavior, and Immunity. 2008;22(3):324–338. doi: 10.1016/j.bbi.2007.08.008.
    1. Krüger K., Mooren F. C. Exercise-induced leukocyte apoptosis. Exercise Immunology Review. 2014;20:117–134.
    1. Krüger K., Mooren F. C. T cell homing and exercise. Exercise Immunology Review. 2007;13:37–54.
    1. Sancho D., Gómez M., Sánchez-Madrid F. CD69 is an immunoregulatory molecule induced following activation. Trends in Immunology. 2005;26(3):136–140. doi: 10.1016/j.it.2004.12.006.
    1. Clarkson P. M., Sayers S. P. Etiology of exercise-induced muscle damage. Canadian Journal of Applied Physiology. 1999;24(3):234–248. doi: 10.1139/h99-020.
    1. Butterfield T. A., Best T. M., Merrick M. A. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. Journal of Athletic Training. 2006;41(4):457–465.
    1. Langrish C. L., McKenzie B. S., Wilson N. J., de Waal Malefyt R., Kastelein R. A., Cua D. J. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunological Reviews. 2004;202:96–105. doi: 10.1111/j.0105-2896.2004.00214.x.
    1. Elenkov I. J., Papanicolaou D. A., Wilder R. L., Chrousos G. P. Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications. Proceedings of the Association of American Physicians. 1996;108(5):374–381.
    1. Michael O., Silver G. M., Davis J. H., Gamelli R. L., Hebert J. C. Interleukin 1β improves survival following cecal ligation and puncture. Journal of Surgical Research. 1992;52(5):518–522. doi: 10.1016/0022-4804(92)90321-p.
    1. Ozaki K., Leonard W. J. Cytokine and cytokine receptor pleiotropy and redundancy. The Journal of Biological Chemistry. 2002;277(33):29355–29358. doi: 10.1074/jbc.r200003200.
    1. Tidball J. G., Villalta S. A. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology-Regulatory Integrative and Comparative Physiology. 2010;298(5):R1173–R1187. doi: 10.1152/ajpregu.00735.2009.
    1. Michailidis Y., Karagounis L. G., Terzis G., et al. Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. The American Journal of Clinical Nutrition. 2013;98(1):233–245. doi: 10.3945/ajcn.112.049163.
    1. Mair J., Mayr M., Muller E., et al. Rapid adaptation to eccentric exercise-induced muscle damage. International Journal of Sports Medicine. 1995;16(6):352–356. doi: 10.1055/s-2007-973019.
    1. Menetrey J., Kasemkijwattana C., Day C. S., et al. Growth factors improve muscle healing in vivo. The Journal of Bone & Joint Surgery—British Volume. 2000;82(1):131–137. doi: 10.1302/0301-620x.82b1.8954.
    1. Goustin A. S., Leof E. B., Shipley G. D., Moses H. L. Growth factors and cancer. Cancer Research. 1986;46(3):1015–1029.
    1. Binder D. K., Scharfman H. E. Brain-derived neurotrophic factor. Growth Factors. 2004;22(3):123–131. doi: 10.1080/08977190410001723308.
    1. Mousavi K., Jasmin B. J. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. The Journal of Neuroscience. 2006;26(21):5739–5749. doi: 10.1523/jneurosci.5398-05.2006.
    1. Deasy B. M., Qu-Peterson Z., Greenberger J. S., Huard J. Mechanisms of muscle stem cell expansion with cytokines. Stem Cells. 2002;20(1):50–60. doi: 10.1634/stemcells.20-1-50.
    1. Broudy V. C. Stem cell factor and hematopoiesis. Blood. 1997;90(4):1345–1364.
    1. Schmolz M., Hurst T. L., Bailey D. M., et al. Validation of a new highly standardised, lab-independent whole-blood leukocyte function assay for clinical trials (ILCS®) Experimental Gerontology. 2004;39(4):667–671. doi: 10.1016/j.exger.2003.09.029.
    1. Guha M., Mackman N. LPS induction of gene expression in human monocytes. Cellular Signalling. 2001;13(2):85–94. doi: 10.1016/S0898-6568(00)00149-2.
    1. Krakauer T. Update on staphylococcal superantigen-induced signaling pathways and therapeutic interventions. Toxins. 2013;5(9):1629–1654. doi: 10.3390/toxins5091629.

Source: PubMed

3
S'abonner