Morquio A syndrome-associated mutations: a review of alterations in the GALNS gene and a new locus-specific database

Amelia Morrone, Anna Caciotti, Robert Atwood, Kathryn Davidson, Chaoyi Du, Patricia Francis-Lyon, Paul Harmatz, Matthew Mealiffe, Sean Mooney, Tal Ronnen Oron, April Ryles, Karl A Zawadzki, Nicole Miller, Amelia Morrone, Anna Caciotti, Robert Atwood, Kathryn Davidson, Chaoyi Du, Patricia Francis-Lyon, Paul Harmatz, Matthew Mealiffe, Sean Mooney, Tal Ronnen Oron, April Ryles, Karl A Zawadzki, Nicole Miller

Abstract

Morquio A syndrome (mucopolysaccharidosis IVA) is an autosomal recessive disorder that results from deficient activity of the enzyme N-acetylgalactosamine-6-sulfatase (GALNS) due to alterations in the GALNS gene, which causes major skeletal and connective tissue abnormalities and effects on multiple organ systems. The GALNS alterations associated with Morquio A are numerous and heterogeneous, and new alterations are continuously identified. To aid detection and interpretation of GALNS alterations, from previously published research, we provide a comprehensive and up-to-date listing of 277 unique GALNS alterations associated with Morquio A identified from 1,091 published GALNS alleles. In agreement with previous findings, most reported GALNS alterations are missense changes and even the most frequent alterations are relatively uncommon. We found that 48% of patients are assessed as homozygous for a GALNS alteration, 39% are assessed as heterozygous for two identified GALNS alterations, and in 13% of patients only one GALNS alteration is detected. We report here the creation of a locus-specific database for the GALNS gene (http://galns.mutdb.org/) that catalogs all reported alterations in GALNS to date. We highlight the challenges both in alteration detection and genotype-phenotype interpretation caused in part by the heterogeneity of GALNS alterations and provide recommendations for molecular testing of GALNS.

Keywords: GALNS; MPS IVA; Morquio A; lysosomal storage disorder; mucopolysaccharidosis type IVA.

© 2014 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
GALNS Gene Structure: a view of most frequently reported alleles and reported large deletions/rearrangements. GALNS enzyme primary active site residues (Rivera-Colon et al., 2012) are indicated (*): p.Asp39, p.Asp40, p.Cys/dihydroxyalanine79, p.Arg83, p.Tyr108, p.Lys140, p.His142, p.His236, p.Asp288, p.Asn289, and p.Lys310.
Figure 2
Figure 2
Population properties of published patients with Morquio A. A: A plurality of patients with Morquio A are reported to be homozygous for a GALNS gene alteration. All Morquio A patients with GALNS gene alteration data presented as a genotype were divided into the following categories: those assessed to be homozygous for a reported GALNS gene alteration, heterozygous for two reported GALNS gene alterations, or only one mutated GALNS allele reported. B: Frequency of reported alleles in patients with Morquio A by mutation type. GALNS alleles reported from patients with Morquio A (i.e., totaling all reports of a given gene alteration; n = 1091) are categorized by alteration type; missense alterations are further divided between the three most frequently reported alterations in the GALNS gene (c.1156C>T [p.R386C; n = 55]; c.337A>T [p.I113F; n = 52]; and c.901G>T [p.G301C; n = 45]) and all other missense alterations (n = 706). C: Most GALNS gene alterations are rare. All reported GALNS alleles are categorized and graphed by how often they have been reported in patients with Morquio A. Gene alterations that have been reported only once or twice (two left columns) are divided between those gene alterations reported in a single patient or two or more patients. Two of the 87 alterations in the GALNS gene only reported once are from one instance of a GALNS allele reported from a patient with Morquio A where two missense alterations—with unknown individual association with disease—are present in cis [Morrone et al., 2014]. The most frequently reported GALNS gene alterations are listed in columns in order of reported frequency, with the top listed gene alterations the most frequently reported within that category.
Figure 3
Figure 3
Assessed growth phenotype severity of patients with Morquio A, by GALNS gene alteration type. All patients assessed as homozygous for a GALNS gene alteration were grouped by their assessed growth phenotype and then divided by alteration type. Assessments of “attenuated,” “slowly progressing,” or “mild” growth phenotypes were grouped with “less severe” (n = 26); assessments of “moderate” were grouped with “intermediate” (n = 6); and assessments of “rapidly progressing” and “severe” were grouped with “most severe” (n = 107). Graph labels show the numbers of each GALNS gene alteration type reported.

References

    1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–249.
    1. Caciotti A, Bardelli T, Cunningham J, D'Azzo A, Zammarchi E, Morrone A. Modulating action of the new polymorphism L436F detected in the GLB1 gene of a type-II GM1 gangliosidosis patient. Hum Genet. 2003;113:44–50.
    1. Caciotti A, Donati MA, Boneh A, d'Azzo A, Federico A, Parini R, Antuzzi D, Bardelli T, Nosi D, Kimonis V, Zammarchi E, Morrone A. Role of beta-galactosidase and elastin binding protein in lysosomal and nonlysosomal complexes of patients with GM1-gangliosidosis. Hum Mutat. 2005;25:285–292.
    1. Catarzi S, Giunti L, Papadia F, Gabrielli O, Guerrini R, Donati MA, Genuardi M, Morrone A. Morquio A syndrome due to maternal uniparental isodisomy of the telomeric end of chromosome 16. Mol Genet Metab. 2012;105:438–442.
    1. Cimaz R, Coppa GV, Kone-Paut I, Link B, Pastores GM, Elorduy MR, Spencer C, Thorne C, Wulffraat N, Manger B. Joint contractures in the absence of inflammation may indicate mucopolysaccharidosis. Pediatr Rheumatol Online J. 2009;7:7–18.
    1. den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000;15:7–12.
    1. Dung VC, Tomatsu S, Montaño AM, Gottesman G, Bober MB, Mackenzie W, Maeda M, Mitchell GA, Suzuki Y, Orii T. Mucopolysaccharidosis IVA: Correlation between genotype, phenotype and keratan sulfate levels. Mol Genet Metab. 2013;110:129–138.
    1. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39:D945–D950.
    1. Gieselmann V, Fluharty AL, Tonnesen T, Von Figura K. Mutations in the arylsulfatase A pseudodeficiency allele causing metachromatic leukodystrophy. Am J Hum Genet. 1991;49:407–413.
    1. Harmatz P, Mengel KE, Giugliani R, Valayannopoulos V, Lin SP, Parini R, Guffon N, Burton BK, Hendriksz CJ, Mitchell J, Martins A, Jones S, Guelbert N, Vellodi A, Hollak C, Slasor P, Decker C. The Morquio AClinical Assessment Program: baseline results illustrating progressive, multisystemic clinical impairments in Morquio A subjects. Mol Genet Metab. 2013;109:54–61.
    1. Hendriksz CJ, Harmatz P, Beck M, Jones S, Wood T, Lachman R, Gravance CG, Orii T, Tomatsu S. Review of clinical presentation and diagnosis of Mucopolysaccharidosis IVA. Mol Genet Metab. 2013a;110:54–64.
    1. Hendriksz C, Burton BK, Fleming T, Giugliani R, Harmatz P, Hughes D, Jones S, Lin S, Mengel KE, Scarpa M, Valayannopoulos V. A multi-national, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of BMN 110 treatment for mucopolysaccharidosis IVAMorquio syndrome type A. Mol Genet Metab. 2013b;108:S48.
    1. Kato Z, Fukuda S, Tomatsu S, Vega H, Yasunaga T, Yamagishi A, Yamada N, Valencia A, Barrera LA, Sukegawa K, Orii T, Kondo N. A novel common missense mutation G301C in the N-acetylgalactosamine-6-sulfate sulfatase gene in Mucopolysaccharidosis IVA. Hum Genet. 1997;101:97–101.
    1. Lachman RS, Burton BK, Clarke LA, Hoffinger S, Ikegawa S, Jin DK, Kano H, Kim OH, Lampe C, Mendelsohn NJ, Shediac R, Tanpaiboon P, White KK. Mucopolysaccharidosis IVAMorquio A syndrome) and VIMaroteaux–?Lamy syndrome): under-recognized and challenging to diagnose. Skeletal Radiol. 2014;43:359–369.
    1. Landsverk ML, Douglas GV, Tang S, Zhang VW, Wang GL, Wang J, Wong LJ. Diagnostic approaches to apparent homozygosity. Genet Med. 2012;14:877–882.
    1. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics. 2009;25:2744–2750.
    1. Longdon K, Pennock CA. Abnormal keratan sulphate excretion. Ann Clin Biochem. 1979;16:152–154.
    1. Martell LA, Cunico RL, Ohh J, Fulkerson W, Furneaux R, Foehr ED. Validation of an LC–MSMS assay for detecting relevant disaccharides from keratan sulfate as a biomarker for Morquio A syndrome. Bioanalysis. 2011;3:1855–1866.
    1. Meyer LR, Zweig AS, Hinrichs AS, Karolchik D, Kuhn RM, Wong M, Sloan CA, Rosenbloom KR, Roe G, Rhead B, Raney BJ, Pohl A, Malladi VS, Li CH, Lee BT, Learned K, Kirkup V, Hsu F, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Goldman M, Giardine BM, Fujita PA, Dreszer TR, Diekhans M, Cline MS, Clawson H, Barber GP, Haussler D, Kent WJ. The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res. 2013;41:D64–D69.
    1. Montaño AM, Tomatsu S, Brusius A, Smith M, Orii T. Growth charts for patients affected with Morquio A disease. Am J Med Genet A. 2008;146A:1286–1295.
    1. Montaño AM, Tomatsu S, Gottesman GS, Smith M, Orii T. International Morquio A Registry: clinical manifestation and natural course of Morquio A disease. J Inherit Metab Dis. 2007;30:165–174.
    1. Morrone A, Tylee KL, Al-Sayed M, Brusius-Facchin AC, Caciotti A, Church HJ, Coll MJ, Davidson D, Fietz MJ, Gort L, Hegde M, Kubaski F, Lacerda L, Laranjeira F, Leistner-Segal S, Mooney S, Pajares S, Pollard L, Ribeiro I, Wang RY, Miller N. Molecular testing of 163 patients with Morquio AMucopolysaccharidosis IVA) identifies 39 novel GALNS mutations. Mol Genet Metab. 2014;112:160–170.
    1. Nakashima Y, Tomatsu S, Hori T, Fukuda S, Sukegawa K, Kondo N, Suzuki Y, Shimozawa N, Orii T. Mucopolysaccharidosis IV A: molecular cloning of the human N-acetylgalactosamine-6-sulfatase gene (GALNS) and analysis of the 5'-flanking region. Genomics. 1994;20:99–104.
    1. Nelson J. Incidence of the mucopolysaccharidoses in Northern Ireland. Hum Genet. 1997;101:355–358.
    1. Nelson J, Crowhurst J, Carey B, Greed L. Incidence of the mucopolysaccharidoses in Western Australia. Am J Med Genet A. 2003;123A:310–313.
    1. Northover H, Cowie RA, Wraith JE. Mucopolysaccharidosis type IVAMorquio syndrome): a clinical review. J Inherit Metab Dis. 1996;19:357–365.
    1. Rivera-Colón Y, Schutsky EK, Kita AZ, Garman SC. The structure of human GALNS reveals the molecular basis for Mucopolysaccharidosis IV A. J Mol Biol. 2012;423:736–751.
    1. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–311.
    1. Spacil Z, Tatipaka H, Barcenas M, Scott CR, Turecek F, Gelb MH. High-throughput assay of 9 lysosomal enzymes for newborn screening. Clin Chem. 2013;59:502–511.
    1. Thomas GH. Pseudodeficiencies” of lysosomal hydrolases. Am J Hum Genet. 1994;54:934–940.
    1. Tomatsu S, Fukuda S, Masue M, Sukegawa K, Fukao T, Yamagishi A, Hori T, Iwata H, Ogawa T, Nakashima Y. Morquio disease: isolation, characterization and expression of full-length cDNA for human N-acetylgalactosamine-6-sulfate sulfatase. Biochem Biophys Res Commun. 1991;181:677–683.
    1. Tomatsu S, Montaño AM, Dung VC, Ohashi A, Oikawa H, Oguma T, Orii T, Barrera L, Sly WS. Enhancement of drug delivery: enzyme-replacement therapy for murine Morquio A syndrome. Mol Ther. 2010;18:1094–1102.
    1. Tomatsu S, Montaño AM, Ohashi A, Gutierrez MA, Oikawa H, Oguma T, Dung VC, Nishioka T, Orii T, Sly WS. Enzyme replacement therapy in a murine model of Morquio A syndrome. Hum Mol Genet. 2008;17:815–824.
    1. Tomatsu S, Montaño AM, Oikawa H, Smith M, Barrera L, Chinen Y, Thacker MM, Mackenzie WG, Suzuki Y, Orii T. Mucopolysaccharidosis type IVAMorquio A disease): clinical review and current treatment. Curr Pharm Biotechnol. 2011;12:931–945.
    1. Tomatsu S, Nishioka T, Montaño AM, Gutierrez MA, Pena OS, Orii KO, Sly WS, Yamaguchi S, Orii T, Paschke E, Kircher SG, Noguchi A. Mucopolysaccharidosis IVA: identification of mutations and methylation study in GALNS gene. J Med Genet. 2004;41:e98–e98.
    1. Tomatsu S, Orii KO, Vogler C, Nakayama J, Levy B, Grubb JH, Gutierrez MA, Shim S, Yamaguchi S, Nishioka T, Montaño AM, Noguchi A, Orii T, Kondo N, Sly WS. Mouse model of N-acetylgalactosamine-6-sulfate sulfatase deficiency (Galns−/−) produced by targeted disruption of the gene defective in Morquio A disease. Hum Mol Genet. 2003;12:3349–3358.
    1. Tomatsu S, Vogler C, Montaño AM, Gutierrez M, Oikawa H, Dung VC, Orii T, Noguchi A, Sly WS. Murine model (Galns(tm(C76S)slu)) of MPS IVA with missense mutation at the active site cysteine conserved among sulfatase proteins. Mol Genet Metab. 2007;91:251–258.
    1. Tomatsu S, Gutierrez M, Nishioka T, Yamada M, Yamada M, Tosaka Y, Grubb JH, Montaño AM, Vieira MB, Trandafirescu GG, Peña OM, Yamaguchi S, Orii KO, Orii T, Noguchi A, Laybauer L. Development of MPS IVA mouse (Galnstm(hC79S·mC76S)slu) tolerant to human N-acetylgalactosamine-6-sulfate sulfatase. Hum Mol Genet. 2005a;14:3321–3335.
    1. Tomatsu S, Montaño AM, Nishioka T, Gutierrez MA, Peña OM, Tranda firescu GG, Lopez P, Yamaguchi S, Noguchi A, Orii T. Mutation and polymorphism spectrum of the GALNS gene in mucopolysaccharidosis IVAMorquio A. Hum Mutat. 2005b;26:500–512.
    1. Tylee KL, Morrone A, Al-Sayed M, Brusius-Facchin AC, Church HJ, Coll MJ, Miller N. Mucopolysaccharidosis IVa (Morquio A) molecular analysis: a review of the advantages and limitations of molecular testing of GALNS in the diagnosis of Morquio A. Hum Mutat. 2013;36:S259.
    1. UniProtConsortium. Activities at the Universal Protein Resource (UniProt) Nucleic Acids Res. 2014;42:D191–D198.
    1. Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology (Oxford) 2011;50(Suppl 5):v49–v59.
    1. Wood TC, Harvey K, Beck M, Burin MG, Chien YH, Church HJ, D'Almeida V, van Diggelen OP, Fietz M, Giugliani R, Harmatz P, Hawley SM, Hwu WL, Ketteridge D, Lukacs Z, Miller N, Pasquali M, Schenone A, Thompson JN, Tylee K, Yu C, Hendriksz CJ. Diagnosing mucopolysaccharidosis IVA. J Inherit Metab Dis. 2013;36:293–307.
    1. Yamada N, Fukuda S, Tomatsu S, Muller V, Hopwood JJ, Nelson J, Kato Z, Yamagishi A, Sukegawa K, Kondo N, Orii T. Molecular heterogeneity in mucopolysaccharidosis IVA in Australia and Northern Ireland: nine novel mutations including T312S, a common allele that confers a mild phenotype. Hum Mutat. 1998;11:202–208.
    1. Yasuda E, Fushimi K, Suzuki Y, Shimizu K, Takami T, Zustin J, Patel P, Ruhnke K, Shimada T, Boyce B, Kokas T, Barone C, Theroux M, Mackenzie W, Nagel B, Ryerse JS, Orii KE, Iida H, Orii T, Tomatsu S. Pathogenesis of Morquio A syndrome: an autopsied case reveals systemic storage disorder. Mol Genet Metab. 2013;109:301–311.
    1. Zanetti A, Ferraresi E, Picci L, Filocamo M, Parini R, Rosano C, Tomanin R, Scarpa M. Segregation analysis in a family at risk for the Maroteaux–Lamy syndrome conclusively reveals c.1151G>A (p.S384N) as to be a polymorphism. Eur J Hum Genet. 2009;17:1160–1164.
    1. Zlotogora J, Bach G. Deficiency of lysosomal hydrolases in apparently healthy individuals. Am J Med Genet. 1983;14:73–80.

Source: PubMed

3
S'abonner