Early-life gut microbiome modulation reduces the abundance of antibiotic-resistant bacteria

Giorgio Casaburi, Rebbeca M Duar, Daniel P Vance, Ryan Mitchell, Lindsey Contreras, Steven A Frese, Jennifer T Smilowitz, Mark A Underwood, Giorgio Casaburi, Rebbeca M Duar, Daniel P Vance, Ryan Mitchell, Lindsey Contreras, Steven A Frese, Jennifer T Smilowitz, Mark A Underwood

Abstract

Background: Antibiotic-resistant (AR) bacteria are a global threat. AR bacteria can be acquired in early life and have long-term sequelae. Limiting the spread of antibiotic resistance without triggering the development of additional resistance mechanisms is of immense clinical value. Here, we show how the infant gut microbiome can be modified, resulting in a significant reduction of AR genes (ARGs) and the potentially pathogenic bacteria that harbor them.

Methods: The gut microbiome was characterized using shotgun metagenomics of fecal samples from two groups of healthy, term breastfed infants. One group was fed B. infantis EVC001 in addition to receiving lactation support (n = 29, EVC001-fed), while the other received lactation support alone (n = 31, controls). Coliforms were isolated from fecal samples and genome sequenced, as well as tested for minimal inhibitory concentrations against clinically relevant antibiotics.

Results: Infants fed B. infantis EVC001 exhibited a change to the gut microbiome, resulting in a 90% lower level of ARGs compared to controls. ARGs that differed significantly between groups were predicted to confer resistance to beta lactams, fluoroquinolones, or multiple drug classes, the majority of which belonged to Escherichia, Clostridium, and Staphylococcus. Minimal inhibitory concentration assays confirmed the resistance phenotypes among isolates with these genes. Notably, we found extended-spectrum beta lactamases among healthy, vaginally delivered breastfed infants who had never been exposed to antibiotics.

Conclusions: Colonization of the gut of breastfed infants by a single strain of B. longum subsp. infantis had a profound impact on the fecal metagenome, including a reduction in ARGs. This highlights the importance of developing novel approaches to limit the spread of these genes among clinically relevant bacteria. Future studies are needed to determine whether colonization with B. infantis EVC001 decreases the incidence of AR infections in breastfed infants.

Trial registration: This clinical trial was registered at ClinicalTrials.gov, NCT02457338.

Keywords: Antibiotic resistance gene; Host-microbe interactions; Metagenomics; Microbiology; Probiotics.

Conflict of interest statement

Competing interestsGC, RMD, SAF, LC, RM, and DV are employed by Evolve BioSystems, Inc.

Figures

Fig. 1
Fig. 1
Taxonomic classification of metagenomic reads for EVC001-fed infants and controls. a Relative abundance of the top bacterial genera identified between the two groups of infants. b Relative abundance of bacterial species belonging to the Bifidobacterium genus identified among groups. c Hierarchical clustering based on a strain-level analysis of Bifidobacterium longum subspecies. Gene family profiles of a subgroup of reference genomes were selected from a global (n = 38) strain analysis. Each column represents the presence or absence of genes in a sample or a reference genome with respect to the total pangenome. All samples from EVC001-fed infants clustered together with B. longum subsp. infantis ATCC 15697 (B. infantis), whereas the samples from infants in the control group clustered separately with other B. longum subspecies (e.g., B. suis, B. longum DJ01A, and B. longum NCC2705). Functional analysis of gene families confirmed that the EVC001 samples were dominated by B. infantis due to the presence of unique genes (e.g., Blon_2348 in B. infantis), while genes present only in B. longum subsp. longum (e.g., araD; araA), were abundant in the communities from control infants. P-values were computed for each gene via Fisher’s exact test according to group
Fig. 2
Fig. 2
Relative abundance of the total resistome profile in each metagenome sample. a Relative abundance of antibiotic resistance genes (ARGs) compared with the overall metagenome for each sample. Each point represents a sample resistome (control, n = 31; EVC001-fed, n = 29). Box plots denote the interquartile range (IQR), with horizontal lines representing the 25th percentile, median, and 75th percentiles. The whiskers represent the lowest and highest values within 1.5 times the IQR from the first and third quartiles, respectively. The asterisks on the top indicate significant P-values (Mann-Whitney test). b Relative abundance of ARGs according to their taxonomic identification. The shade of color represents genera belonging to the same bacterial class. The asterisks on the top indicate significant P-values (Kruskal-Wallis test)
Fig. 3
Fig. 3
Comparison of the most significant antibiotic resistance gene types. a Relative abundance of the most significantly different antibiotic resistance genes (ARGs) identified among EVC001-fed infants and controls (P < 0.02; Bonferroni). Percentages are relative to the overall metagenome. These ARGs confer resistance to different drug classes, including beta-lactams, fluoroquinolones, and macrolides. The ARGs are grouped by gene name, followed by CARD identification entry (ARO). The colored bars represent respective drug class to which the ARG is known to confer resistance to. b Heatmap showing a hierarchical cluster analysis of the total ARGs identified (n = 652). Two groups were identified, one characterized by a lower-ARG carriage, containing most of the samples from infants fed EVC001 and one characterized by a higher overall carriage, containing most samples from infants in the control group. Genes clustered based on similar biological mechanisms implicated in drug resistance (see Results). P-values on the bar were computed using a Kruskal-Wallis test normalized with a Bonferroni correction
Fig. 4
Fig. 4
Quantification of Enterobacteriaceae family by group-specific qPCR. The data are represented as Log10 CFU per μg of genomic DNA extracted from stool samples. Data in boxplots show the median, first, and third quartiles (P < 0.0001, Mann-Whitney Test)
Fig. 5
Fig. 5
Diversity analyses of infant resistomes according to B. infantis EVC001 colonization. a Rarefaction curves showing the number of unique antibiotic resistance genes (ARGs) identified in relation to the increasing number of sequences. Both EVC001 and the control group presented similar curve trends, suggesting that the sequencing depth is not associated with the diversity of antibiotic resistance. P-values were computed with a nonparametric two-sample t-test using Monte Carlo permutations (n = 999). b Global resistome profiles computed via a principal coordinate analysis (PCoA) based on a Bray-Curtis dissimilarity matrix. The EVC001-fed samples clustered closely, indicating that they shared a similar resistome compared to the controls, which had a more dispersed distribution. The effect of B. infantis EVC001 colonization by itself accounted for 31% of the total explained variation (adonis). The P-value was computed using F-tests based on the sequential sums of squares from permutations of the raw data

References

    1. Zhang L, Kinkelaar D, Huang Y, Li Y, Li X, Wang HH. Acquired antibiotic resistance: are we born with it? Appl Environ Microbiol. 2011;77(20):7134–7141.
    1. Klevens RM, Edwards JR, Richards CL, Jr, Horan TC, Gaynes RP, Pollock DA, et al. Estimating health care-associated infections and deaths in US hospitals, 2002. Public Health Rep. 2007;122(2):160–166.
    1. Carmeli Y. Strategies for managing today’s infections. Clin Microbiol Infect. 2008;14(s3):22–31.
    1. Dodds DR. Antibiotic resistance: A current epilogue. Biochem Pharmacol. 2017;134:139–146.
    1. Hernández J, Stedt J, Bonnedahl J, Molin Y, Drobni M, Calisto-Ulloa N, et al. Human-associated extended-spectrum β-lactamase in the Antarctic. Appl Environ Microbiol. 2012;78(6):2056–2058.
    1. Forsberg K. J., Reyes A., Wang B., Selleck E. M., Sommer M. O. A., Dantas G. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens. Science. 2012;337(6098):1107–1111.
    1. Toussaint A, Chandler M. Prokaryote genome fluidity: toward a system approach of the mobilome. Bacterial Mol Netw. 2012:57–80.
    1. Gillings MR. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Front Microbiol. 2013;4.
    1. Salyers AA, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004;12(9):412–416.
    1. Hu Y, Yang X, Qin J, Lu N, Cheng G, Wu N, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat Commun. 2013;4:2151.
    1. Penders J, Stobberingh EE, Savelkoul PH, Wolffs PF. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol. 2013;4.
    1. Sommer MO, Dantas G, Church GM. Functional characterization of the antibiotic resistance reservoir in the human microflora science. 2009;325(5944):1128–1131.
    1. Andremont A. Commensal flora may play key role in spreading antibiotic resistance. ASM news. 2003;69(12):601–607.
    1. Marshall BM, Ochieng DJ, Levy SB. Commensals: underappreciated reservoir of antibiotic resistance. Microbe. 2009;4(5):231–238.
    1. Alicea-Serrano AM, Contreras M, Magris M, Hidalgo G, Dominguez-Bello MG. Tetracycline resistance genes acquired at birth. Arch Microbiol. 2013;195(6):447–451.
    1. Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, Siljander H, et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe. 2018;24(1):146–154.
    1. Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(11):3216–3223.
    1. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One. 2010;5(3):e9836.
    1. Young SL, Simon MA, Baird MA, Tannock GW, Bibiloni R, Spencely K, et al. Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin Diagn Lab Immunol. 2004;11(4):686–690.
    1. Huda MN, Lewis Z, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, et al. Stool microbiota and vaccine responses of infants. Pediatrics. 2014;134(2):e362–ee72.
    1. Tannock GW, Lee PS, Wong KH, Lawley B. Why Don't all infants have Bifidobacteria in their stool? Front Microbiol. 2016;7.
    1. Henrick BM, Hutton AA, Palumbo MC, Casaburi G, Mitchell RD, Underwood MA, et al. Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of Bifidobacterium over the Past Century. mSphere. 2018;3(2):e00041–e00018.
    1. Casaburi G, Frese SA. Colonization of breastfed infants by Bifidobacterium longum subsp. infantis EVC001 reduces virulence gene abundance. Human Microbiome J. 2018.
    1. Taft DH, Liu J, Maldonado-Gomez MX, Akre S, Huda MN, Ahmad S, et al. Bifidobacterial dominance of the gut in early life and acquisition of antimicrobial resistance. mSphere. 2018;3(5):e00441–e00418.
    1. Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, et al. Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants. mSphere. 2017;2(6).
    1. Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–853.
    1. Pärnänen K, Karkman A, Hultman J, Lyra C, Bengtsson-Palme J, Larsson DJ, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun. 2018;9(1):3891.
    1. Smilowitz JT, Moya J, Breck MA, Cook C, Fineberg A, Angkustsiri K, et al. Safety and tolerability of Bifidobacterium longum subspecies infantis EVC001 supplementation in healthy term breastfed infants: a phase I clinical trial. BMC Pediatr. 2017;17(1):133.
    1. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120.
    1. Czajkowski MD, Vance DP, Frese SA, Casaburi G. GenCoF: A graphical user interface to rapidly remove human genome contaminants from metagenomic datasets. Bioinformatics. 2018;35(13):2318–2319.
    1. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods. 2015;12(10):902.
    1. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F, et al. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. 2016;13(5):435–438.
    1. Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207.
    1. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550(7674):61.
    1. Matsuda K, Tsuji H, Asahara T, Kado Y, Nomoto K. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. Appl Environ Microbiol. 2007;73(1):32–39.
    1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8(6):e1002358.
    1. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
    1. McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57(7):3348–3357.
    1. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 2011;21(10):1616–1625.
    1. Zhang T, Zhang X-X, Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One. 2011;6(10):e26041.
    1. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One. 2011;6(2):e17038.
    1. Yang Y, Li B, Ju F, Zhang T. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environ Sci Technol. 2013;47(18):10197–10205.
    1. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience. 2012;1(1):7.
    1. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17(3):377–386.
    1. McCall CA, Bent E, Jørgensen TS, Dunfield KE, Habash MB. Metagenomic comparison of antibiotic resistance genes associated with liquid and dewatered biosolids. J Environ Qual. 2016;45(2):463–470.
    1. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–477.
    1. Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS) 2006;26:M7-A.
    1. CLSI . Performance Standards for Antimicrobial Susceptibility Testing: CLSI supplement. M100S. 26. Wayne, PA: Clinical and Laboratory Standards Institute; 2016.
    1. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017:gr. 215087.116.
    1. Sela D, Chapman J, Adeuya A, Kim J, Chen F, Whitehead T, et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci. 2008;105(48):18964–18969.
    1. Underwood MA, German JB, Lebrilla CB, Mills DA. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res. 2015;77:229.
    1. Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe. 2016;20(4):515–526.
    1. Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, et al. The evolution of host specialization in the vertebrate gut symbiont lactobacillus reuteri. PLoS Genet. 2011;7(2):e1001314.
    1. Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005;245(2):195–203.
    1. Bannam TL, Johanesen PA, Salvado CL, Pidot SJ, Farrow KA, Rood JI. The Clostridium perfringens TetA (P) efflux protein contains a functional variant of the motif a region found in major facilitator superfamily transport proteins. Microbiology. 2004;150(1):127–134.
    1. Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001;193(9):1067–1076.
    1. Kim H-S, Nikaido H. Different functions of MdtB and MdtC subunits in the heterotrimeric efflux transporter MdtB2C complex of Escherichia coli. Biochemistry. 2012;51(20):4188–4197.
    1. Rosenberg EY, Ma D, Nikaido H. AcrD of Escherichia coli is an aminoglycoside efflux pump. J Bacteriol. 2000;182(6):1754–1756.
    1. Eicher T, Brandstätter L, Pos KM. Structural and functional aspects of the multidrug efflux pump AcrB. Biol Chem. 2009;390(8):693–699.
    1. Bengoechea JA, Zhang L, Toivanen P, Skurnik M. Regulatory network of lipopolysaccharide O-antigen biosynthesis in Yersinia enterocolitica includes cell envelope-dependent signals. Mol Microbiol. 2002;44(4):1045–1062.
    1. Lomovskaya O, Lewis K, Matin A. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J Bacteriol. 1995;177(9):2328–2334.
    1. Andersen JL, He G-X, Kakarla P, KC R, Kumar S, Lakra WS, et al. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health. 2015;12(2):1487–1547.
    1. Fàbrega A, Martin RG, Rosner JL, Tavio MM, Vila J. Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG. Antimicrob Agents Chemother. 2010;54(3):1218–1225.
    1. Nagakubo S, Nishino K, Hirata T, Yamaguchi A. The putative response regulator BaeR stimulates multidrug resistance of Escherichia coli via a novel multidrug exporter system, MdtABC. J Bacteriol. 2002;184(15):4161–4167.
    1. Randall L, Woodward MJ. The multiple antibiotic resistance (mar) locus and its significance. Res Vet Sci. 2002;72(2):87–93.
    1. Newburg DS. Oligosaccharides in human milk and bacterial colonization. J Pediatr Gastroenterol Nutr. 2000;30:S8–S17.
    1. McSweeney Paul L. H., Fox Patric F. Advanced Dairy Chemistry. New York, NY: Springer New York; 2009. Significance of Lactose in Dairy Products; pp. 35–104.
    1. Albrecht S, Schols HA, van den Heuvel EG, Voragen AG, Gruppen H. Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk. Carbohydr Res. 2011;346(16):2540–2550.
    1. Bode L. Recent advances on structure, metabolism, and function of human milk oligosaccharides. J Nutr. 2006;136(8):2127–2130.
    1. Davis JC, Lewis ZT, Krishnan S, Bernstein RM, Moore SE, Prentice AM, et al. Growth and morbidity of Gambian infants are influenced by maternal Milk oligosaccharides and infant gut microbiota. Sci Rep. 2017;7:40466.
    1. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177.
    1. Tannock GW. Commentary: remembrance of microbes past. Int J Epidemiol. 2005;34(1):13–15.
    1. Brooks B, Firek BA, Miller CS, Sharon I, Thomas BC, Baker R, et al. Microbes in the neonatal intensive care unit resemble those found in the gut of premature infants. Microbiome. 2014;2(1):1.
    1. Golkar Z, Bagasra O, Pace DG. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries. 2014;8(02):129–136.
    1. Lee C-R, Cho IH, Jeong BC, Lee SH. Strategies to minimize antibiotic resistance. Int J Environ Res Public Health. 2013;10(9):4274–4305.
    1. Forslund K, Sunagawa S, Kultima JR, Mende DR, Arumugam M, Typas A, et al. Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 2013;23(7):1163–1169.
    1. Versluis D, D’Andrea MM, Garcia JR, Leimena MM, Hugenholtz F, Zhang J, et al. Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Sci Rep. 2015;5:11981.
    1. Gibson MK, Wang B, Ahmadi S, Burnham C-AD, Tarr PI, Warner BB, et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat Microbiol. 2016;1:16024.
    1. Francino M. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front Microbiol. 2016;6:1543.
    1. Fouhy F, Ogilvie LA, Jones BV, Ross RP, Ryan AC, Dempsey EM, et al. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library. PLoS One. 2014;9(9):e108016.
    1. Rose G, Shaw AG, Sim K, Wooldridge DJ, Li M-S, Gharbia S, et al. Antibiotic resistance potential of the healthy preterm infant gut microbiome. PeerJ. 2017;5:e2928.
    1. Willmann M, Peter S. Translational metagenomics and the human resistome: confronting the menace of the new millennium. J Mol Med (Berl) 2017;95(1):41–51.
    1. Davis MA, Besser TE, Orfe LH, Baker KN, Lanier AS, Broschat SL, et al. Genotypic-phenotypic discrepancies between antibiotic resistance characteristics of Escherichia coli from calves in high and low antibiotic use management settings. Appl Environ Microbiol. 2011.
    1. Corona F, Martinez JL. Phenotypic resistance to antibiotics. Antibiotics. 2013;2(2):237–255.
    1. Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416(6882):740–743.
    1. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305(5690):1622–1625.
    1. Duranti S, Lugli GA, Mancabelli L, Turroni F, Milani C, Mangifesta M, et al. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl Environ Microbiol. 2017;83(3):e02894–e02816.

Source: PubMed

3
S'abonner