Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants

Steven A Frese, Andra A Hutton, Lindsey N Contreras, Claire A Shaw, Michelle C Palumbo, Giorgio Casaburi, Gege Xu, Jasmine C C Davis, Carlito B Lebrilla, Bethany M Henrick, Samara L Freeman, Daniela Barile, J Bruce German, David A Mills, Jennifer T Smilowitz, Mark A Underwood, Steven A Frese, Andra A Hutton, Lindsey N Contreras, Claire A Shaw, Michelle C Palumbo, Giorgio Casaburi, Gege Xu, Jasmine C C Davis, Carlito B Lebrilla, Bethany M Henrick, Samara L Freeman, Daniela Barile, J Bruce German, David A Mills, Jennifer T Smilowitz, Mark A Underwood

Abstract

Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function.

Keywords: bifidobacteria; breast milk; human milk oligosaccharides; infant microbiome.

Figures

FIG 1
FIG 1
Mean relative abundance of predominant bacteria in CON infants delivered by CS (A) or DV (B). (C) Differentially abundant families were identified by using MaAsLin. Points are colored with respect to the delivery mode associated with their being differentially abundant: yellow, DV; purple, CS.
FIG 2
FIG 2
Mean relative abundance of predominant taxa in feces of CON (A) and EVC001-fed (B) infants. (C) Log10 of B. infantis cells per gram of feces during the supplementation period (day 8 to 29) and through 60 days postnatal, with a Loess fit curve with confidence intervals. (D) Differentially abundant bacterial families identified by MaAsLin. ***, P < 0.001.
FIG 3
FIG 3
(A) Mean weighted UniFrac distance (± SD) between fecal samples from CON infants and from infants in the EVC001 supplementation group. (B) Mean Shannon diversity index (± SD). Note that B. infantis EVC001 was fed from day 7. ***, P < 0.001.
FIG 4
FIG 4
Jaccard stability index for EVC001-fed and CON infants; significant differences were calculated between EVC001 and other groups by using multiple t tests with the Holm-Sidak correction. ***, P < 0.001.
FIG 5
FIG 5
(A) Mean concentration of HMOs (in milligrams per milliliter, ± SD) in milk among mothers in the study. (B) Mean concentration of fecal HMOs (in milligrams per gram of feces, ± SD) in infant stools at day 6 and day 29. (C) Mean organic acids (lactate and SCFA) in fecal samples at day 6 or day 29 (in micromoles per gram, ± SD). Note that B. infantis EVC001 was fed from day 7. ***, P < 0.001.
FIG 6
FIG 6
Biochemistry changes associated with EVC001 colonization. (A) Mean fecal pH (± SD) from infants fed EVC001 and CON infants. (B) Fecal Bifidobacterium counts (log10 cells per gram of feces) correlate with pH. (C) Median log10 fecal endotoxin (EU per milliliter) from supplemented (EVC001) and UNS infants. Points represent mean values. **, P < 0.01.

References

    1. Huda MN, Lewis Z, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, Qadri F, Underwood MA, Mills DA, Stephensen CB. 2014. Stool microbiota and vaccine responses of infants. Pediatrics 134:e362–e372. doi:10.1542/peds.2013-3937.
    1. Lewis ZT, Sidamonidze K, Tsaturyan V, Tsereteli D, Khachidze N, Pepoyan A, Zhgenti E, Tevzadze L, Manvelyan A, Balayan M, Imnadze P, Torok T, Lemay DG, Mills DA. 2017. The fecal microbial community of breast-fed infants from Armenia and Georgia. Sci Rep 7:40932. doi:10.1038/srep40932.
    1. Davis JCC, Lewis ZT, Krishnan S, Bernstein RM, Moore SE, Prentice AM, Mills DA, Lebrilla CB, Zivkovic AM. 2017. Growth and morbidity of Gambian infants are influenced by maternal milk oligosaccharides and infant gut microbiota. Sci Rep 7:40466. doi:10.1038/srep40466.
    1. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, Van Tassell ML, Miller MJ, Jin YS, German JB, Lebrilla CB, Mills DA. 2015. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13. doi:10.1186/s40168-015-0071-z.
    1. Grześkowiak Ł, Collado MC, Mangani C, Maleta K, Laitinen K, Ashorn P, Isolauri E, Salminen S. 2012. Distinct gut microbiota in southeastern African and northern European infants. J Pediatr Gastroenterol Nutr 54:812–816. doi:10.1097/MPG.0b013e318249039c.
    1. Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, Kolde R, Vlamakis H, Arthur TD, Hämäläinen AM, Peet A, Tillmann V, Uibo R, Mokurov S, Dorshakova N, Ilonen J, Virtanen SM, Szabo SJ, Porter JA, Lähdesmäki H, Huttenhower C, Gevers D, Cullen TW, Knip M, DIABIMMUNE Study Group, Xavier RJ. 2016. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165:842–853. doi:10.1016/j.cell.2016.04.007.
    1. Sirilun S, Takahashi H, Boonyaritichaikij S, Chaiyasut C, Lertruangpanya P, Koga Y, Mikami K. 2015. Impact of maternal bifidobacteria and the mode of delivery on Bifidobacterium microbiota in infants. Benefic Microbes 6:767–774. doi:10.3920/BM2014.0124.
    1. Makino H, Kushiro A, Ishikawa E, Kubota H, Gawad A, Sakai T, Oishi K, Martín R, Ben-Amor K, Knol J, Tanaka R. 2013. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant’s microbiota. PLoS One 8:e78331. doi:10.1371/journal.pone.0078331.
    1. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J, Jun W. 2015. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703. doi:10.1016/j.chom.2015.04.004.
    1. Walker WA. 2017. The importance of appropriate initial bacterial colonization of the intestine in newborn, child, and adult health. Pediatr Res 82:387–395. doi:10.1038/pr.2017.111.
    1. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547. doi:10.1038/nature09646.
    1. Underwood MA. 2016. Probiotics and innate and adaptive immune responses in premature infants. Forum Immunopathol Dis Ther 7:1–15. doi:10.1615/ForumImmunDisTher.2016018178.
    1. Tanabe S, Kinuta Y, Saito Y. 2008. Bifidobacterium infantis suppresses proinflammatory interleukin-17 production in murine splenocytes and dextran sodium sulfate-induced intestinal inflammation. Int J Mol Med 22:181–185. doi:10.3892/ijmm_00000006.
    1. Lewis ZT, Shani G, Masarweh CF, Popovic M, Frese SA, Sela DA, Underwood MA, Mills DA. 2016. Validating bifidobacterial species and subspecies identity in commercial probiotic products. Pediatr Res 79:445–452. doi:10.1038/pr.2015.244.
    1. Petschow BW, Figueroa R, Harris CL, Beck LB, Ziegler E, Goldin B. 2005. Effects of feeding an infant formula containing Lactobacillus GG on the colonization of the intestine: a dose-response study in healthy infants. J Clin Gastroenterol 39:786–790. doi:10.1097/01.mcg.0000177245.53753.86.
    1. Plaza-Diaz J, Gomez-Llorente C, Campaña-Martin L, Matencio E, Ortuño I, Martínez-Silla R, Gomez-Gallego C, Periago MJ, Ros G, Chenoll E, Genovés S, Casinos B, Silva A, Corella D, Portolés O, Romero F, Ramón D, Perez de la Cruz A, Gil A, Fontana L. 2013. Safety and immunomodulatory effects of three probiotic strains isolated from the feces of breast-fed infants in healthy adults: SETOPROB study. PLoS One 8:e78111. doi:10.1371/journal.pone.0078111.
    1. Jacobsen CN, Rosenfeldt Nielsen V, Hayford AE, Møller PL, Michaelsen KF, Paerregaard A, Sandström B, Tvede M, Jakobsen M. 1999. Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl Environ Microbiol 65:4949–4956.
    1. Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, Hillmann B, Vangay P, Knights D, Hutkins RW, Walter J. 2016. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20:515–526. doi:10.1016/j.chom.2016.09.001.
    1. Zivkovic AM, German JB, Lebrilla CB, Mills DA. 2011. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 108:4653–4658. doi:10.1073/pnas.1000083107.
    1. Underwood MA, German JB, Lebrilla CB, Mills DA. 2015. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Pediatr Res 77:229–235. doi:10.1038/pr.2014.156.
    1. Smilowitz JT, Moya J, Breck MA, Cook C, Fineberg A, Angkustsiri K, Underwood MA. 2017. Safety and tolerability of Bifidobacterium longum subspecies infantis EVC001 supplementation in healthy term breastfed infants: a phase I clinical trial. BMC Pediatr 17:133. doi:10.1186/s12887-017-0886-9.
    1. Davis JCC, Totten SM, Huang JO, Nagshbandi S, Kirmiz N, Garrido DA, Lewis ZT, Wu LD, Smilowitz JT, German JB, Mills DA, Lebrilla CB. 2016. Identification of oligosaccharides in feces of breast-fed infants and their correlation with the gut microbial community. Mol Cell Proteomics 15:2987–3002. doi:10.1074/mcp.M116.060665.
    1. Motulsky HJ, Brown RE. 2006. Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7:123. doi:10.1186/1471-2105-7-123.
    1. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, D Lieber A, Wu F, Perez-Perez GI, Chen Y, Schweizer W, Zheng X, Contreras M, Dominguez-Bello MG, Blaser MJ. 2016. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med 8:343ra82. doi:10.1126/scitranslmed.aad7121.
    1. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975. doi:10.1073/pnas.1002601107.
    1. Yassour M, Vatanen T, Siljander H, Hämäläinen AM, Härkönen T, Ryhänen SJ, Franzosa EA, Vlamakis H, Huttenhower C, Gevers D, Lander ES, Knip M, DIABIMMUNE Study Group, Xavier RJ. 2016. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci Transl Med 8:343ra81. doi:10.1126/scitranslmed.aad0917.
    1. LoCascio RG, Desai P, Sela DA, Weimer B, Mills DA. 2010. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl Environ Microbiol 76:7373–7381. doi:10.1128/AEM.00675-10.
    1. Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, Lebrilla CB, Weimer BC, Mills DA, German JB, Sonnenburg JL. 2011. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10:507–514. doi:10.1016/j.chom.2011.10.007.
    1. Newburg DS. 2000. Oligosaccharides in human milk and bacterial colonization. J Pediatr Gastroenterol Nutr 30:S8–S17.
    1. Albrecht S, Schols HA, van den Heuvel EGHM, Voragen AGJ, Gruppen H. 2011. Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk. Carbohydr Res 346:2540–2550. doi:10.1016/j.carres.2011.08.009.
    1. Bode L. 2015. The functional biology of human milk oligosaccharides. Early Hum Dev 91:619–622. doi:10.1016/j.earlhumdev.2015.09.001.
    1. Pokusaeva K, Fitzgerald GF, van Sinderen D. 2011. Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306. doi:10.1007/s12263-010-0206-6.
    1. Stecher B, Hardt WD. 2011. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:82–91. doi:10.1016/j.mib.2010.10.003.
    1. Shin NR, Whon TW, Bae JW. 2015. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503. doi:10.1016/j.tibtech.2015.06.011.
    1. Garcia CK, Goldstein JL, Pathak RK, Anderson RG, Brown MS. 1994. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: implications for the Cori cycle. Cell 76:865–873. doi:10.1016/0092-8674(94)90361-1.
    1. Gladden LB. 2004. Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30. doi:10.1113/jphysiol.2003.058701.
    1. Subramanian S, Huq S, Yatsunenko T, Haque R, Mahfuz M, Alam MA, Benezra A, DeStefano J, Meier MF, Muegge BD, Barratt MJ, VanArendonk LG, Zhang Q, Province MA, Petri WA, Ahmed T, Gordon JI. 2014. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510:417–421. doi:10.1038/nature13421.
    1. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA. 2015. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria. Sci Rep 5:13517. doi:10.1038/srep13517.
    1. Chichlowski M, De Lartigue G, German JB, Raybould HE, Mills DA. 2012. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 55:321–327. doi:10.1097/MPG.0b013e31824fb899.
    1. Wickramasinghe S, Pacheco AR, Lemay DG, Mills DA. 2015. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. BMC Microbiol 15:172. doi:10.1186/s12866-015-0508-3.
    1. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. 2012. Primer3: new capabilities and interfaces. Nucleic Acids Res 40:e115. doi:10.1093/nar/gks596.
    1. Koressaar T, Remm M. 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291. doi:10.1093/bioinformatics/btm091.
    1. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. 2015. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-15. doi:10.1128/mSystems.00009-15.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. doi:10.1073/pnas.1000080107.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/nmeth.f.303.
    1. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi:10.1093/bioinformatics/btq461.
    1. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. doi:10.1038/nmeth.2276.
    1. Faith DP. 1992. Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10. doi:10.1016/0006-3207(92)91201-3.
    1. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, Rosenbaum M, Gordon JI. 2013. The long-term stability of the human gut microbiota. Science 341:1237439. doi:10.1126/science.1237439.
    1. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79. doi:10.1186/gb-2012-13-9-r79.
    1. Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, Xu G, Velazquez EM, Lebrilla CB, Winter SE, Bäumler AJ. 2016. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of Salmonella. Cell Host Microbe 19:443–454. doi:10.1016/j.chom.2016.03.004.
    1. Penders J, Vink C, Driessen C, London N, Thijs C, Stobberingh EE. 2005. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol Lett 243:141–147. doi:10.1016/j.femsle.2004.11.052.
    1. Malinen E, Rinttilä T, Kajander K, Mättö J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A. 2005. Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol 100:373–382. doi:10.1111/j.1572-0241.2005.40312.x.
    1. Milani C, Lugli GA, Turroni F, Mancabelli L, Duranti S, Viappiani A, Mangifesta M, Segata N, van Sinderen D, Ventura M. 2014. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol Ecol 90:493–503. doi:10.1111/1574-6941.12410.

Source: PubMed

3
S'abonner