Elevated Fecal pH Indicates a Profound Change in the Breastfed Infant Gut Microbiome Due to Reduction of Bifidobacterium over the Past Century

Bethany M Henrick, Andra A Hutton, Michelle C Palumbo, Giorgio Casaburi, Ryan D Mitchell, Mark A Underwood, Jennifer T Smilowitz, Steven A Frese, Bethany M Henrick, Andra A Hutton, Michelle C Palumbo, Giorgio Casaburi, Ryan D Mitchell, Mark A Underwood, Jennifer T Smilowitz, Steven A Frese

Abstract

Historically, Bifidobacterium species were reported as abundant in the breastfed infant gut. However, recent studies in resource-rich countries show an increased abundance of taxa regarded as signatures of dysbiosis. It is unclear whether these differences are the product of genetics, geographic factors, or interventions such as formula feeding, antibiotics, and caesarean section. Fecal pH is strongly associated with Bifidobacterium abundance; thus, pH could be an indicator of its historical abundance. A review of 14 clinical studies published between 1926 and 2017, representing more than 312 healthy breastfed infants, demonstrated a change in fecal pH from 5.0 to 6.5 (adjusted r2 = 0.61). This trend of increasing infant fecal pH over the past century is consistent with current reported discrepancies in Bifidobacterium species abundance in the gut microbiome in resource-rich countries compared to that in historical reports. Our analysis showed that increased fecal pH and abundance of members of the families Enterobacteriaceae, Clostridiaceae, Peptostreptococcaceae, and Veillonellaceae are associated, indicating that loss of highly specialized Bifidobacterium species may result in dysbiosis, the implications of which are not yet fully elucidated. Critical assessment of interventions that restore this ecosystem, measured by key parameters such as ecosystem productivity, gut function, and long-term health, are necessary to understand the magnitude of this change in human biology over the past century.

Keywords: Bifidobacterium; biochemistry; infant microbiome; microbiome.

Figures

FIG 1
FIG 1
Correlation of bacterial families identified via 16S rRNA marker gene sequencing with fecal pH. Corresponding P values were considered statistically significant when they were ≤0.05 with false-discovery rate (FDR) correction. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
FIG 2
FIG 2
Fecal pH reported in studies along with the average, standard deviation, and numbers of samples measured (where reported) plotted by year of study publication. A linear trend (solid line) and 95% confidence interval (dashed lines) are plotted.

References

    1. Logan WR. 1913. The intestinal flora of infants and young children. J Pathol 18:527–551. doi:10.1002/path.1700180154.
    1. Tannock GW, Lee PS, Wong KH, Lawley B. 2016. Why don’t all infants have bifidobacteria in their stool? Front Microbiol 7:834. doi:10.3389/fmicb.2016.00834.
    1. Vatanen T, Kostic AD, d’Hennezel E, Siljander H, Franzosa EA, Yassour M, Kolde R, Vlamakis H, Arthur TD, Hämäläinen A-M, Peet A, Tillmann V, Uibo R, Mokurov S, Dorshakova N, Ilonen J, Virtanen SM, Szabo SJ, Porter JA, Lähdesmäki H, Huttenhower C, Gevers D, Cullen TW, Knip M, DIABIMMUNE Study Group, Xavier RJ. 2016. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165:842–853. doi:10.1016/j.cell.2016.04.007.
    1. Zivkovic AM, German JB, Lebrilla CB, Mills DA. 2011. Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 108:4653–4658. doi:10.1073/pnas.1000083107.
    1. Huda MN, Lewis Z, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, Qadri F, Underwood MA, Mills DA, Stephensen CB. 2014. Stool microbiota and vaccine responses of infants. Pediatrics 134:e362–e372. doi:10.1542/peds.2013-3937.
    1. Lewis ZT, Totten SM, Smilowitz JT, Popovic M, Parker E, Lemay DG, Van Tassell ML, Miller MJ, Jin YS, German JB, Lebrilla CB, Mills DA. 2015. Maternal fucosyltransferase 2 status affects the gut bifidobacterial communities of breastfed infants. Microbiome 3:13. doi:10.1186/s40168-015-0071-z.
    1. Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, Xu G, Davis JCC, Lebrilla CB, Henrick BM, Freeman SL, Barile D, German JB, Mills DA, Smilowitz JT, Underwood MA, Krajmalnik-Brown R. 2017. Persistence of supplemented Bifidobacterium longum subsp. infantis EVC001 in breastfed infants. mSphere 2:e00501-17. doi:10.1128/mSphere.00501-17.
    1. Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, Kodama H, Yamamoto K, Yamada T, Matsumoto S, Kurokawa K. 2016. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 7:11939. doi:10.1038/ncomms11939.
    1. Norton RC, Shohl AT. 1926. The hydrogen ion concentration of the stools of the new-born infants. Am J Dis Child 32:183–191.
    1. Gyorgy P, Norris RF, Rose CS. 1954. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 48:193–201. doi:10.1016/0003-9861(54)90323-9.
    1. Pokusaeva K, Fitzgerald GF, van Sinderen D. 2011. Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306. doi:10.1007/s12263-010-0206-6.
    1. Betrán AP, Ye J, Moller AB, Zhang J, Gülmezoglu AM, Torloni MR. 2016. The increasing trend in caesarean section rates: global, regional and national estimates: 1990–2014. PLoS One 11:e0148343-12. doi:10.1371/journal.pone.0148343.
    1. Duranti S, Lugli GA, Mancabelli L, Turroni F, Milani C, Mangifesta M, Ferrario C, Anzalone R, Viappiani A, van Sinderen D, Ventura M. 2017. Prevalence of antibiotic resistance genes among human gut-derived bifidobacteria. Appl Environ Microbiol 83:e02894-16. doi:10.1128/AEM.02894-16.
    1. Stearns JC, Simioni J, Gunn E, McDonald H, Holloway AC, Thabane L, Mousseau A, Schertzer JD, Ratcliffe EM, Rossi L, Surette MG, Morrison KM, Hutton EK. 2017. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep 7:16527. doi:10.1038/s41598-017-16606-9.
    1. Sommer F, Bäckhed F. 2013. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238. doi:10.1038/nrmicro2974.
    1. Knip M, Honkanen J. 2017. Modulation of type 1 diabetes risk by the intestinal microbiome. Curr Diab Rep 17:105. doi:10.1007/s11892-017-0933-9.
    1. Knip M, Siljander H. 2016. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 12:154–167. doi:10.1038/nrendo.2015.218.
    1. Arrieta MC, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, Kuzeljevic B, Gold MJ, Britton HM, Lefebvre DL, Subbarao P, Mandhane P, Becker A, McNagny KM, Sears MR, Kollmann T, CHILD Study, Mohn WW, Turvey SE, Finlay BB. 2015. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci Transl Med 7:307ra152. doi:10.1126/scitranslmed.aab2271.
    1. Eitel H. 1917. Die wahre Reaktion der Stühle gesunder Säuglinge bei verschiedener Ernährung. Z Kinderheilkd 16:13–62. doi:10.1007/BF02222668.
    1. Freudenberg E, Heller O. 1921. Über Darmgärung II. Über den Einfluss von Eiweiss und Kalk auf die Gärung. Jahresber Kinderheilkd 95:314.
    1. Tisdall FF. 1924. Studies of the acidity (hydrogen ion concentration) of infants’ stools. Arch Pediatr Adolesc Med 27:312–331. doi:10.1001/archpedi.1924.01920100017003.
    1. Uldall C. 1942. Comparative studies on feces of healthy breast, bottle and spoon-fed infants. Acta Paediatr 29:339–366. doi:10.1111/j.1651-2227.1942.tb16393.x.
    1. Barbero GJ, Runge G, Fischer D, Crawford MN, Torres FE, Gyorgy P. 1952. Investigations on the bacterial flora, pH, and sugar content in the intestinal tract of infants. J Pediatr 40:152–163. doi:10.1016/S0022-3476(52)80176-3.
    1. Pratt AG, Read WT. 1955. Influence of type of feeding on pH of stool, pH of skin, and incidence of perianal dermatitis in the newborn infant. J Pediatr 46:539–543. doi:10.1016/S0022-3476(55)80259-4.
    1. Nagai T. 1960. Clinical and experimental studies of ethyl-N-acetyl-d-glucosamine as bifidus factor. Pediatr Int 3:83–102. doi:10.1111/j.1442-200X.1960.tb01617.x.
    1. Bullen CL, Willis AT. 1971. Resistance of the breast-fed infant to gastroenteritis. Br Med J iii:338–343.
    1. Bullen CL, Tearle PV, Stewart MG. 1977. The effect of “humanised” milks and supplemented breast feeding on the faecal flora of infants. J Med Microbiol 10:403–413. doi:10.1099/00222615-10-4-403.
    1. Simhon A, Douglas JR, Drasar BS, Soothill JF. 1982. Effect of feeding on infants’ faecal flora. Arch Dis Child 57:54–58.
    1. Balmer SE, Wharton BA. 1989. Diet and faecal flora in the newborn: breast milk and infant formula. Arch Dis Child 64:1672–1677. doi:10.1136/adc.64.12.1672.
    1. Ogawa K, Ben RA, Pons S, de Paolo MI, Bustos Fernández L. 1992. Volatile fatty acids, lactic acid, and pH in the stools of breast-fed and bottle-fed infants. J Pediatr Gastroenterol Nutr 15:248–252. doi:10.1097/00005176-199210000-00004.
    1. Knol J, Scholtens P, Kafka C, Steenbakkers J, Gro S, Helm K, Klarczyk M, Schöpfer H, Böckler HM, Wells J. 2005. Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 40:36–42. doi:10.1097/00005176-200501000-00007.
    1. Mohan R, Koebnick C, Schildt J, Mueller M, Radke M, Blaut M. 2008. Effects of Bifidobacterium lactis Bb12 supplementation on body weight, fecal pH, acetate, lactate, calprotectin, and IgA in preterm infants. Pediatr Res 64:418–422. doi:10.1203/PDR.0b013e318181b7fa.
    1. Holscher HD, Faust KL, Czerkies LA, Litov R, Ziegler EE, Lessin H, Hatch T, Sun S, Tappenden KA. 2012. Effects of prebiotic-containing infant formula on gastrointestinal tolerance and fecal microbiota in a randomized controlled trial. JPEN J Parenter Enteral Nutr 36:95S–105S. doi:10.1177/0148607111430087.

Source: PubMed

3
S'abonner