Why Don't All Infants Have Bifidobacteria in Their Stool?

Gerald W Tannock, Pheng Soon Lee, Khai Hong Wong, Blair Lawley, Gerald W Tannock, Pheng Soon Lee, Khai Hong Wong, Blair Lawley

No abstract available

Keywords: Lachnospiraceae; bifidobacteria; child development; fecal microbiota; infants.

Figures

Figure 1
Figure 1
(A) Examples of babies without bifidobacteria, or very low abundances of bifidobacteria, in feces during the first 12 weeks of life. Bifidobacteria were undetectable by DNA sequencing of 16S rRNA gene amplicons at 6 and 12 weeks in the feces of AF067; 6, 8, 10, and 12 weeks in AF70; 8 and 10 weeks in AF075; and 6 and 12 weeks in AF090. (B) Comparison of bifidobacerial abundances in the feces of infants delivered vaginally or by cesarean. Note that in both groups, bifidobacteria were not detected in some infants. (C) Comparison of abundances of bacterial families in microbiotas of breast milk-fed infants in relation to abundances of bifidobacteria. (D) Comparison of abundances of bacterial families in microbiotas of cow milk formula-fed infants in relation to abundances of bifidobacteria. (E) Comparison of abundances of bacterial families in microbiotas of goat milk formula-fed infants in relation to abundances of bifidobacteria. Note that Lachnospiraceae have increased abundances when bifidobacteria have low relative abundance. Figures after Tannock et al. (2013), reproduced with permission.

References

    1. Aufreiter S., Gregory J. F., Pfeiffer C. M., Fazil Z., Kim Y.-I., Marcon N., et al. . (2009). Folate is absorbed across the colon of adults: evidence from cecal infusion of 13C-labelled [6S]-5-formaltetrahydrofolic acid. Am. J. Clin. Nutr. 90, 116–123. 10.3945/ajcn.2008.27345
    1. Barrett E., Deshpandey A. K., Ryan C. A., Dempsey E. M., Murphy B., O'sullivan L., et al. . (2015). The neonatal gut harbours distinct bifidobacterial strains. Arch. Dis. Child. Fetal Neonatal Ed. 100, F405–F410. 10.1136/archdischild-2014-306110
    1. Bottacini F., Motherway M. O., Kucynski J., O'Connell K. J., Serafini F., Duranti S., et al. . (2014). Comparative genomics of the Bifidobacterium breve taxon. BMC Genom. 15:170. 10.1186/1471-2164-15-170
    1. Caufield P. W., Cutter G. R., Dasanayake A. P. (1993). Initial acquisition of mutans streptococci by infants: evidence for a discrete window of infectivity. J. Dent. Res. 72, 37–45. 10.1177/00220345930720010501
    1. Coppa G. V., Gabrielli O., Zampini L., Galeazzi T., Ficcadenti A., Padella L., et al. . (2011). Oligosaccharides in 4 different milk groups, Bifidobacteria and Ruminococcus obeum. J. Pediatr. Gastroenterol. Nutr. 53, 80–87. 10.1097/MPG.0b013e3182073103
    1. Crider K. S., Young T. P., Berry R. J., Bailey L. B. (2012). Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate's role. Adv. Nutr. 3, 21–38. 10.3945/an.111.000992
    1. D'Aimmo M. R., Mattarelli P., Biavati B., Carlsson N. G., Andlid T. (2012). The potential of bifidobacteria as a source of natural folate. J. Appl. Microbiol. 112, 975–984. 10.1111/j.1365-2672.2012.05261
    1. Dubos R., Savage D., Schaedler R., Biological Freudianism (1966). Lasting effects of early environmental influences. Pediatric 38, 789–800.
    1. Favier C. F., Vaughan E. E., De Vos W. M., Akkermans A. D. L. (2002). Molecular monitoring of succession of bacterial communities in human neonates. Appl. Environ. Microbiol. 68, 219–226. 10.1128/AEM.68.1.219-226.2002
    1. Garrido D., Dallas D. C., Mills D. A. (2013). Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology 159, 649–664. 10.1099/mic.0.064113-0
    1. Gibson R. A. (1999). Long-chain polyunsaturated fatty acids and infant development. Lancet 354, 1919–1920. 10.1016/S0140-6736(99)00300-1
    1. Gore C., Munro K., Lay C., Bibiloni R., Morris J., Woodcock A., et al. . (2008). Bifidobacterium pseudocatenulatum is associated with atopic eczema: a nested case-control study investigating the fecal microbiota of infants. J. Allergy. Clin. Immunol. 121, 135–140. 10.1016/j.jaci.2007.07.061
    1. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., et al. . (2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61–67. 10.1097/00005176-200001000-00019
    1. Jansen G. J., Wildeboer-Veloo A. C., Tonk R. H., Franks A. H., Welling G. W. (1999). Development and validation of an automated, microscopy-based method for enumeration of groups of intestinal bacteria. J. Microbiol. Methods 37, 215–221. 10.1016/S0167-7012(99)00049-4
    1. Kunz C., Rudloff S., Baier W., Klein N., Strobel S. (2000). Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu. Rev. Microbiol. 20, 699–722. 10.1146/annurev.nutr.20.1.699
    1. Lakoff A., Fazili Z., Aufreiter S., Pfeiffer C. M., Connolly B., Gregory J. F., et al. (2014). Folate is absorbed across the human colon: evidence using enteric-coated caplets containing 13C-labeled [6S]-5-formyltetrahydrofolate. Am. J. Clin. Nutr. 100, 1278–1286. 10.3945/ajcn.114.091785
    1. Li Y., Caufield P. W. (1995). The fidelity of initial acquisition of mutans streptococci by infants from their mothers. J. Dent. Res. 74, 681–685. 10.1177/00220345950740020901
    1. LoCascio R. G., Desai P., Sela D. A., Weimer B., Mills D. A. (2010). Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl. Environ. Microbiol. 76, 7373–7381. 10.1128/AEM.00675-10
    1. Mariat D., Firmesse O., Levenez F., Guimaraes V. D., Sokol H., Doré J., et al. . (2009). The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 9:123. 10.1186/1471-2180-9-123
    1. McCartney A. L., Wenzhi W., Tannock G. W. (1996). Molecular analysis of the composition of the bifidobacterial and lactobacillus microflora of humans. Appl. Environ. Microbiol. 62, 4608–4613.
    1. Meldrum S. J., D'Vaz N., Simmer K., Dunstan J. A., Hird K., Prescott S. L. (2012). Effects of high-dose fish oil supplementation during early infancy on neurodevelopment and language: a randomized controlled trial. Br. J. Nutr. 108, 1443–1454. 10.1017/S0007114511006878
    1. Milani C., Lugli G. A., Turroni F., Mancabelli L., Duranti S., Viappiani A., et al. . (2014). Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS)protocol. FEMS Microbiol. Ecol. 90, 493–503. 10.1111/1574-6941.12410
    1. O'Callaghan A., Bottacini F., Motherway M. O., van Sinderen D. (2015). Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genom. 16:832. 10.1186/s12864-015-1968-4
    1. Pacheco A. R., Barile D., Underwood M. A., Mills D. A. (2015). The impact of the milk glycobiome on the neonate gut microbiota. Ann. Rev. Anim. Sci. 3, 419–445. 10.1146/annurev-animal-022114-111112
    1. Ruhaak L. R., Stroble C., Underwood M. A., Lebrilla C. B. (2014). Detection of milk oligosaccharides in plasma of infants. Anal. Bioanal. Chem. 406, 5775–5784. 10.1007/s00216-014-8025-z
    1. Sela D. A., Chapman J., Adeuya A., Kim J. H., Chen F., Whitehead T. R., et al. . (2008). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci.U.S.A. 2, 18964–18969. 10.1073/pnas.0809584105
    1. Svennerholm L., Boström K., Fredman P., Mansson J. E., Rosengren B., Rynmark B. M. (1989). Human brain gangliosides: developmental changes from early fetal stage to advanced age. Biochim. Biophys. Acta 1005, 109–117. 10.1016/0005-2760(89)90175-6
    1. Tannock G. W., Lawley B., Munro K., Pathmanathan S. G., Zhou S. J., Makrides M., et al. . (2013). Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl. Environ. Microbiol. 79, 3040–3048. 10.1128/AEM.03910-12
    1. Turroni F., Bottacini F., Foroni E., Mulder I., Kim J.-H., Zomer A., et al. . (2010). Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc. Natl. Acad. Sci. U.S.A. 107, 19514–19519. 10.1073/pnas.1011100107
    1. Turroni F., Peano C., Pass D. A., Foroni E., Severgnini M., Claesson M. J., et al. . (2012). Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE 7:e36957. 10.1371/journal.pone.0036957
    1. Uauy R., Mena P., Peirano P. (2001). Mechanisms for nutrient effects on brain development and cognition. Nestle Nutr. Workshop Ser. Clin. Perform Programme 5, 41–70. 10.1159/000061845
    1. Uauy R., Peirano P. (1999). Breast is best: human milk is the optimal food for brain development. Amer. J. Clin. Nutr. 70, 433–434.
    1. Wang B. (2012). Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Adv. Nutr. 3, 465S–472S. 10.3945/an.112.001875
    1. Wang B., McVeagh P., Petocz P., Brand-Miller J. (2003). Brain ganglioside and glycoprotein sialic acid in breast-fed compared with formula-fed infants. Am. J. Clin. Nutr. 78, 1024–1029.
    1. Wang B., Miller J. B., McNeil Y., McVeagh P. (1998). Sialic acid concentration of brain gangliosides: variation among eight mammalian species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 19, 435–439. 10.1016/S1095-6433(97)00445-5
    1. Welling G. W., Elfferich P., Raangs G. C., Wildeboer-Veloo A. C., Jansen G. J., Degener J. E. (1997). 16S ribosomal RNA-taggd oligonucleotide probes for monitoring of intestinal tract bacteria. Scand. J. Gastroenterol. 222, 17–19. 10.1080/00365521.1997.11720711
    1. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., et al. . (2012). Human gut microbiome viewed across age and geography. Nature 486, 222–227. 10.1038/nature11053
    1. Young S. L., Simon M. A., Baird M. A., Tannock G. W., Bibiloni R., Spencely K., et al. . (2004). Bifidobacterial species differentially affect expression of cell surface markers and cytokines of dendritic cells harvested from cord blood. Clin. Diagn. Lab. Immunol. 11, 686–690. 10.1128/cdli.11.4.686-690.2004
    1. Zoetendal E. G., Ben-Amor K., Akkermans A. D., Abee T., de Vos W. M. (2001). DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract. Syst. Appl. Microbiol. 24, 405–410. 10.1078/0723-2020-00060
    1. Zoetendal E. G., von Wright A., Vilponen-Samela T., Ben-Amor K., Akkermans A. D., de Vos W. M. (2002). Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68, 3401–3407. 10.1128/AEM.68.7.3401-3407.2002

Source: PubMed

3
S'abonner