Comparing sensitivity to change using the 6-item versus the 17-item Hamilton depression rating scale in the GUIDED randomized controlled trial

Boadie W Dunlop, Sagar V Parikh, Anthony J Rothschild, Michael E Thase, Charles DeBattista, Charles R Conway, Brent P Forester, Francis M Mondimore, Richard C Shelton, Matthew Macaluso, Jennifer Logan, Paul Traxler, James Li, Holly Johnson, John F Greden, Boadie W Dunlop, Sagar V Parikh, Anthony J Rothschild, Michael E Thase, Charles DeBattista, Charles R Conway, Brent P Forester, Francis M Mondimore, Richard C Shelton, Matthew Macaluso, Jennifer Logan, Paul Traxler, James Li, Holly Johnson, John F Greden

Abstract

Background: Previous research suggests that the 17-item Hamilton Depression Rating Scale (HAM-D17) is less sensitive in detecting differences between active treatment and placebo for major depressive disorder (MDD) than is the HAM-D6 scale, which focuses on six core depression symptoms. Whether HAM-D6 shows greater sensitivity when comparing two active MDD treatment arms is unknown.

Methods: This post hoc analysis used data from the intent-to-treat (ITT) cohort (N = 1541) of the Genomics Used to Improve DEpression Decisions (GUIDED) trial, a rater- and patient-blinded randomized controlled trial. GUIDED compared combinatorial pharmacogenomics-guided care with treatment as usual (TAU) in patients with MDD. Percent of symptom improvement, response rate and remission rate from baseline to week 8 were evaluated using both scales. Analyses were performed for the full cohort and for the subset of patients who at baseline were taking medications predicted by the test to have moderate or significant gene-drug interactions. A Mokken scale analysis was conducted to compare the homogeneity of HAM-D17 with that of HAM-D6.

Results: At week 8, the guided-care arm demonstrated statistically significant benefit over TAU when the HAM-D6 (∆ = 4.4%, p = 0.023) was used as the continuous measure of symptom improvement, but not when using the HAM-D17 (∆ = 3.2%, p = 0.069). Response rates increased significantly for guided-care compared with TAU when evaluated using both HAM-D6 (∆ = 7.0%, p = 0.004) and HAM-D17 (∆ = 6.3%, p = 0.007). Remission rates also were significantly greater for guided-care versus TAU using both measures (HAM-D6 ∆ = 4.6%, p = 0.031; HAM-D17 ∆ = 5.5%, p = 0.005). Patients in the guided-care arm who at baseline were taking medications predicted to have gene-drug interactions showed further increased benefit over TAU at week 8 for symptom improvement (∆ = 7.3%, p = 0.004) response (∆ = 10.0%, p = 0.001) and remission (∆ = 7.9%, p = 0.005) using HAM-D6. All outcomes showed continued improvement through week 24. Mokken scale analysis demonstrated the homogeneity and unidimensionality of HAM-D6, but not of HAM-D17, across treatment arms.

Conclusions: The HAM-D6 scale identified a statistically significant difference in symptom improvement between combinatorial pharmacogenomics-guided care and TAU, whereas the HAM-D17 did not. The demonstrated utility of pharmacogenomics-guided treatment over TAU as detected by the HAM-D6 highlights its value for future biomarker-guided trials comparing active treatment arms.

Trial registration: Clinicaltrials.gov: NCT02109939. Registered 10 April 2014.

Keywords: Antidepressant; Assessment; Biomarker; Clinical trial; Clinical utility; Comparative effectiveness; Decision-making; Depression; Genetics; Pharmacogenomics.

Conflict of interest statement

BWD has received research support from Acadia, Assurex Health, Axsome, Janssen, and Takeda. Dr. Dunlop has served has a consultant for Assurex Health and Aptinyx.

SVP has received research funding from the Ontario Brain Institute, the Canadian Institutes of Health Research, the James and Ethel Flinn Foundation. Dr. Parikh has served as a consultant for Assurex Health. Dr. Parikh has received honoraria from Mensante Corporation, Takeda, and the Canadian Network for Mood and Anxiety Treatments (CANMAT). Dr. Parikh has equity in Mensante.

AJR has received research support from Allergan, AssureRx, Janssen, the National Institute of Mental Health, Takeda, Eli-Lilly, and Pfizer; Consultant: Alkermes, GlaxoSmithKline, Myriad Genetics, and Sage Therapeutics. Dr. Rothschild receives royalties for the Rothschild Scale for Antidepressant Tachyphylaxis (RSAT)®; Clinical Manual for the Diagnosis and Treatment of Psychotic Depression, American Psychiatric Press, 2009; The Evidence-Based Guide to Antipsychotic Medications, American Psychiatric Press, 2010; The Evidence-Based Guide to Antidepressant Medications, American Psychiatric Press, 2012, and UpToDate®.

MET has received research support from Assurex Health, Acadia, Agency for Healthcare Research and Quality, Alkermes, Avanir, Forest, Intracellular, Janssen, National Institute of Mental Health, Otsuka, Patient-Centered Outcomes Research Institute, Takeda. Dr. Thase has served as a consultant for Acadia, Akilii, Alkermes, Allergan (Forest, Naurex), AstraZeneca, Cerecor, Eli Lilly, Fabre-Kramer, Gerson Lehrman Group, Guidepoint Global, Johnson & Johnson (Janssen, Ortho-McNeil), Lundbeck, MedAvante, Merck, Moksha8, Nestlé (PamLab), Novartis, Otsuka, Pfizer, Shire, Sunovion, Takeda. Dr. Thase receives royalties from American Psychiatric Press, Guilford Publications, Herald House, W.W. Norton & Company, Inc.

CD has received research support from Assurex Health and Brain Resources.

CRC has received research support from LivaNova and Bristol-Myers Squibb, the Stanley Medical Research Institute, the National Institute of Mental Health, NeoSync Inc., The Taylor Family Institute for Innovative Psychiatric Research, The August Busch IV Foundation, and the Barnes-Jewish Hospital Foundation. Dr. Conway has received speaking fees from Bristol-Myers Squibb and Otsuka Pharmaceuticals. Dr. Conway has served as a research design consultant for LivaNova. Dr. Conway is a part time employee of the John Cochran Veterans Administration Hospital in St. Louis.

BPF has received research funding from the National Institutes of Health, Rogers Family Foundation, Spier Family Foundation, Assurex Health, Eli Lilly, and Biogen. Dr. Forester has served as a consultant for Biogen.

FMM has received research funding from Assurex Health.

RCS has received research funding from Acadia Pharmaceuticals, Alkermes, Inc., Allergan, Assurex Health, Avanir Pharmaceuticals, Cerecor, Inc., Genomind, Intracellular Therapies, Janssen Pharmaceutica, Otsuka Pharmaceuticals, and Takeda Pharmaceuticals. Dr. Shelton has served as a consultant for Acadia Pharmaceuticals, Allergan Inc., Cerecor, Inc., Janssen Pharmaceutica, Lundbeck A/S, and Takeda Pharmaceuticals.

MM has conducted clinical trials research as principal investigator for Acadia, Alkermes, Allergan, Assurex Health, Eisai, Lundbeck, Janssen, Naurex/Aptinyx, and Neurim; all study contracts and payments were made to Kansas University Medical Cancer Research Institute.

JL is employed by Myriad Genetics Inc.

JLi is employed by Assurex Health, Inc./Myriad Neuroscience.

HJ is employed by Assurex Health, Inc./Myriad Neuroscience.

JFG has served as a scientific advisor for Janssen Pharmaceutical, Naurex (Allergan) Pharmaceutical, Cerecor Pharmaceutical, NeuralStem, Sage Therapeutics and Genomind. Dr. Greden has received reimbursement as a speaker for Assurex Health in 2014. All work performed as an unpaid consultant to Assurex Health and Myriad Genetics.

Figures

Fig. 1
Fig. 1
Outcomes at week 8 for the full patient cohort. The pharmacogenomics guided-care arm (N = 621) was compared with treatment as usual (TAU) (N = 677). Symptom improvement, response and remission outcomes were evaluated using the HAM-D6 and HAM-D17 depression rating scales
Fig. 2
Fig. 2
Outcomes at week 8 for patients taking medications with gene-drug interactions. The pharmacogenomics guided-care arm (n = 357) was compared with treatment as usual (TAU) (n = 429). Symptom improvement, response and remission outcomes were evaluated using the HAM-D6 and HAM-D17 depression rating scales
Fig. 3
Fig. 3
Durability of improvements in patient outcomes in the pharmacogenomics guided-care study arm. Symptom improvement, response and remission outcomes were evaluated at week 4 (N = 685), week 8, (N = 621), week 12 (N = 585), and week 24 (N = 522) using the HAM-D6 depression rating scale

References

    1. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH, Lebowitz B, McGrath PJ, et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry. 2006;163(1):28–40. doi: 10.1176/appi.ajp.163.1.28.
    1. Hasler G, Drevets WC, Manji HK, Charney DS. Discovering endophenotypes for major depression. Neuropsychopharmacology. 2004;29(10):1765–1781. doi: 10.1038/sj.npp.1300506.
    1. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, Adams MJ, Agerbo E, Air TM, Andlauer TMF, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50(5):668–681. doi: 10.1038/s41588-018-0090-3.
    1. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, Coleman JRI, Hagenaars SP, Ward J, Wigmore EM, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22(3):343–352. doi: 10.1038/s41593-018-0326-7.
    1. Conrado DJ, Rogers HL, Zineh I, Pacanowski MA. Consistency of drug-drug and gene-drug interaction information in US FDA-approved drug labels. Pharmacogenomics. 2013;14(2):215–223. doi: 10.2217/pgs.12.203.
    1. Hicks JK, Bishop JR, Sangkuhl K, Muller DJ, Ji Y, Leckband SG, Leeder JS, Graham RL, Chiulli DL, LLerena A, et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther. 2015;98(2):127–134. doi: 10.1002/cpt.147.
    1. Bousman CA, Arandjelovic K, Mancuso SG, Eyre HA, Dunlop BW. Pharmacogenetic tests and depressive symptom remission: a meta-analysis of randomized controlled trials. Pharmacogenomics. 2019;20(1):37–47. doi: 10.2217/pgs-2018-0142.
    1. Greden JF, Parikh SV, Rothschild AJ, Thase ME, Dunlop BW, DeBattista C, Conway CR, Forester BP, Mondimore FM, Shelton RC, et al. Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: a large, patient- and rater-blinded, randomized, controlled study. J Psychiatr Res. 2019;111:59–67. doi: 10.1016/j.jpsychires.2019.01.003.
    1. Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, Ritz L, Biggs MM, Warden D, Luther JF, et al. Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med. 2006;354(12):1231–1242. doi: 10.1056/NEJMoa052963.
    1. Uher R, Maier W, Hauser J, Marusic A, Schmael C, Mors O, Henigsberg N, Souery D, Placentino A, Rietschel M, et al. Differential efficacy of escitalopram and nortriptyline on dimensional measures of depression. Br J Psychiatry. 2009;194(3):252–259. doi: 10.1192/bjp.bp.108.057554.
    1. Rush AJ, Trivedi MH, Stewart JW, Nierenberg AA, Fava M, Kurian BT, Warden D, Morris DW, Luther JF, Husain MM, et al. Combining medications to enhance depression outcomes (CO-MED): acute and long-term outcomes of a single-blind randomized study. Am J Psychiatry. 2011;168(7):689–701. doi: 10.1176/appi.ajp.2011.10111645.
    1. Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, Leucht S, Ruhe HG, Turner EH, Higgins JPT, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357–1366. doi: 10.1016/S0140-6736(17)32802-7.
    1. Dunlop BW. Evidence-based applications of combination psychotherapy and pharmacotherapy for depression. Focus (Am Psychiatr Publ) 2016;14:156–173.
    1. Fried EI, Nesse RM. Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 2015;13:72. doi: 10.1186/s12916-015-0325-4.
    1. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62. doi: 10.1136/jnnp.23.1.56.
    1. Hamilton M. Development of a rating scale for primary depressive illness. Br J Soc Clin Psychol. 1967;6(4):278–296. doi: 10.1111/j.2044-8260.1967.tb00530.x.
    1. Bech P, Allerup P, Gram LF, Reisby N, Rosenberg R, Jacobsen O, Nagy A. The Hamilton depression scale. Evaluation of objectivity using logistic models. Acta Psychiatr Scand. 1981;63(3):290–299. doi: 10.1111/j.1600-0447.1981.tb00676.x.
    1. Santor DA, Coyne JC. Examining symptom expression as a function of symptom severity: item performance on the Hamilton rating scale for depression. Psychol Assess. 2001;13(1):127–139. doi: 10.1037/1040-3590.13.1.127.
    1. Ostergaard SD, Bech P, Trivedi MH, Wisniewski SR, Rush AJ, Fava M. Brief, unidimensional melancholia rating scales are highly sensitive to the effect of citalopram and may have biological validity: implications for the research domain criteria (RDoC) J Affect Disord. 2014;163:18–24. doi: 10.1016/j.jad.2014.03.049.
    1. Bagby RM, Ryder AG, Schuller DR, Marshall MB. The Hamilton depression rating scale: has the gold standard become a lead weight? Am J Psychiatry. 2004;161(12):2163–2177. doi: 10.1176/appi.ajp.161.12.2163.
    1. Ruhe HG, Dekker JJ, Peen J, Holman R, de Jonghe F. Clinical use of the Hamilton depression rating scale: is increased efficiency possible? A post hoc comparison of Hamilton depression rating scale, Maier and Bech subscales, clinical global impression, and symptom Checklist-90 scores. Compr Psychiatry. 2005;46(6):417–427. doi: 10.1016/j.comppsych.2005.03.001.
    1. Moller HJ. Methodological aspects in the assessment of severity of depression by the Hamilton depression scale. Eur Arch Psychiatry Clin Neurosci. 2001;251(Suppl 2):Ii13-20.
    1. Licht RW, Qvitzau S, Allerup P, Bech P. Validation of the Bech-Rafaelsen melancholia scale and the Hamilton depression scale in patients with major depression; is the total score a valid measure of illness severity? Acta Psychiatr Scand. 2005;111(2):144–149. doi: 10.1111/j.1600-0447.2004.00440.x.
    1. Bech P. The ABC profile of the HAM-D17. Revista brasileira de psiquiatria (Sao Paulo, Brazil: 1999) 2011;33(2):109–110. doi: 10.1590/S1516-44462011000200001.
    1. Bech P, Gram LF, Dein E, Jacobsen O, Vitger J, Bolwig TG. Quantitative rating of depressive states. Acta Psychiatr Scand. 1975;51(3):161–170. doi: 10.1111/j.1600-0447.1975.tb00002.x.
    1. Lecrubier Y, Bech P. The Ham D(6) is more homogenous and as sensitive as the Ham D(17) Eur Psychiatry. 2007;22(4):252–255. doi: 10.1016/j.eurpsy.2007.01.1218.
    1. Timmerby N, Andersen JH, Sondergaard S, Ostergaard SD, Bech P. A systematic review of the clinimetric properties of the 6-item version of the Hamilton depression rating scale (HAM-D6) Psychother Psychosom. 2017;86(3):141–149. doi: 10.1159/000457131.
    1. O'Sullivan RL, Fava M, Agustin C, Baer L, Rosenbaum JF. Sensitivity of the six-item Hamilton depression rating scale. Acta Psychiatr Scand. 1997;95(5):379–384. doi: 10.1111/j.1600-0447.1997.tb09649.x.
    1. Hooper CL, Bakish D. An examination of the sensitivity of the six-item Hamilton rating scale for depression in a sample of patients suffering from major depressive disorder. J Psychiatry Neurosci. 2000;25(2):178–184.
    1. Jablonski M, King N, Wang Y, Winner JG, Watterson LR, Gunselman S, Dechairo BM. Analytical validation of a psychiatric pharmacogenomic test. Personal Med. 2018;15(3):189–197. doi: 10.2217/pme-2017-0094.
    1. Hall-Flavin DK, Winner JG, Allen JD, Jordan JJ, Nesheim RS, Snyder KA, Drews MS, Eisterhold LL, Biernacka JM, Mrazek DA. Using a pharmacogenomic algorithm to guide the treatment of depression. Transl Psychiatry. 2012;2:e172. doi: 10.1038/tp.2012.99.
    1. Frank E, Prien RF, Jarrett RB, Keller MB, Kupfer DJ, Lavori PW, Rush AJ, Weissman MM. Conceptualization and rationale for consensus definitions of terms in major depressive disorder. Remission, recovery, relapse, and recurrence. Arch Gen Psychiatry. 1991;48(9):851–855. doi: 10.1001/archpsyc.1991.01810330075011.
    1. Kyle PR, Lemming OM, Timmerby N, Sondergaard S, Andreasson K, Bech P. The validity of the different versions of the Hamilton depression scale in separating remission rates of placebo and antidepressants in clinical trials of major depression. J Clin Psychopharmacol. 2016;36(5):453–456. doi: 10.1097/JCP.0000000000000557.
    1. Thase ME, Parikh SV, Rothschild AJ, Dunlop BW, DeBattista C, Conway CR, Forester BP, Mondimore FM, Shelton RC, Macaluso M, et al. Impact of pharmacogenomics on clinical outcomes for patients taking medications with gene-drug interactions in a randomized, controlled trial. J Clin Psychiatry. 2019;80(6).
    1. Dunlop BW, Rapaport MH. When should a patient be declared recovered from a major depressive episode? J Clin Psychiatry. 2016;77(8):e1026–e1028. doi: 10.4088/JCP.15com10437.
    1. Zimmerman M, Martinez J, Attiullah N, Friedman M, Toba C, Boerescu DA, Rahgeb M. Further evidence that the cutoff to define remission on the 17-item Hamilton depression rating scale should be lowered. Depress Anxiety. 2012;29(2):159–165. doi: 10.1002/da.20870.
    1. Cumming G. Understanding the new statistics: effect sizes, confidence intervals, and metaanalysis. London: Routledge; 2012.
    1. Dunlop BW, Davis PG. Combination treatment with benzodiazepines and SSRIs for comorbid anxiety and depression: a review. Prim Care Companion J Clin Psychiatry. 2008;10(3):222–228. doi: 10.4088/PCC.v10n0307.
    1. Entsuah R, Shaffer M, Zhang J. A critical examination of the sensitivity of unidimensional subscales derived from the Hamilton depression rating scale to antidepressant drug effects. J Psychiatr Res. 2002;36(6):437–448. doi: 10.1016/S0022-3956(02)00024-9.
    1. Ostergaard SD, Bech P, Miskowiak KW. Fewer study participants needed to demonstrate superior antidepressant efficacy when using the Hamilton melancholia subscale (HAM-D(6)) as outcome measure. J Affect Disord. 2016;190:842–845. doi: 10.1016/j.jad.2014.10.047.
    1. Leon AC, Marzuk PM, Portera L. More reliable outcome measures can reduce sample size requirements. Arch Gen Psychiatry. 1995;52(10):867–871. doi: 10.1001/archpsyc.1995.03950220077014.
    1. Maier W, Philipp M. Improving the assessment of severity of depressive states: a reduction of the Hamilton depression scale. Pharmacopsychiatry. 1985;18:114–115. doi: 10.1055/s-2007-1017335.
    1. Cleary PJ. Problems of internal consistency and scaling in life event schedules. J Psychosom Res. 1981;25(4):309–320. doi: 10.1016/0022-3999(81)90008-8.

Source: PubMed

3
S'abonner