Effects of Minocycline on Urine Albumin, Interleukin-6, and Osteoprotegerin in Patients with Diabetic Nephropathy: A Randomized Controlled Pilot Trial

Anuja P Shah, Jenny I Shen, Ying Wang, Lili Tong, Youngju Pak, Ali Andalibi, Janine A LaPage, Sharon G Adler, Anuja P Shah, Jenny I Shen, Ying Wang, Lili Tong, Youngju Pak, Ali Andalibi, Janine A LaPage, Sharon G Adler

Abstract

Background: We tested minocycline as an anti-proteinuric adjunct to renin-angiotensin-aldosterone system inhibitors (RAASi) in diabetic nephropathy (DN) and measured urinary biomarkers to evaluate minocycline's biological effects.

Design: Prospective, single center, randomized, placebo-controlled, intention-to-treat pilot trial. Inclusion. Type 2 diabetes/DN; Baseline creatinine clearance >30 mL/min; proteinuria ≥1.0 g/day; Age ≥30 years; BP <150/95 mm Hg; intolerant of/at maximum RAASi dose. Protocol. 3-wk screening; Baseline randomization; Urine and blood measures at months 1, 2, 4, and Month 6 study completion. Urine interleukin-6 (IL-6) and osteoprotegerin were measured in a subset. Primary outcome. Natural log of urine protein/creatinine (ln U P:Cr) ratio at Month 6 vs Baseline.

Results: 30 patients completed the study. The 15% decline in U P: Cr in minocycline patients (6 month P:Cr ÷ Baseline P:Cr, 0.85 vs. 0.92) was not significant (p = 0.27). Creatinine clearance did not differ in the 2 groups. Urine IL-6:Cr (p = 0.03) and osteoprotegerin/Cr (p = 0.046) decrements were significant. Minocycline modified the relationship between urine IL-6 and proteinuria, suggesting a protective biological effect.

Conclusions: Although the decline in U P:Cr in minocycline patients was not statistically significant, the significant differences in urine IL-6 and osteoprotegerin suggest that minocycline may confer cytoprotection in patients with DN, providing a rationale for further study.

Trial registration: Clinicaltrials.gov NCT01779089.

Conflict of interest statement

Competing Interests: DaVita Clinical Research provided funding. Meso Scale Discovery performed the urine IL-6 and osteoprotegerin measurements at no cost. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Enrollment of subjects.
Fig 1. Enrollment of subjects.
Fig 2. Spaghetti plots of the urine…
Fig 2. Spaghetti plots of the urine protein: creatinine measurements of each patient in the study over the course of the trial.
Fig 3. Percent change in 24-hour urine…
Fig 3. Percent change in 24-hour urine protein/creatinine measurements from baseline to 6 months in placebo and minocycline groups.
The edges of the boxes represent the 25% and 75% percentiles, the middle lines represents the median, and the whiskers extend to the minimum and maximum values. The primary outcome, ln (6Month P:Cr/baseline P:Cr), was not significantly different between the groups (p = 0.27).
Fig 4. Spaghetti plots of the urine…
Fig 4. Spaghetti plots of the urine IL6: creatinine measurements of each patient in the study from baseline to 6 months (end of trial).
Baseline urine values were not available for 3 subjects.
Fig 5. % change in 24-hour urine…
Fig 5. % change in 24-hour urine Il-6: creatinine measurements from baseline to 6 months in placebo and minocycline groups.
The edges of the boxes represent the 25% and 75% percentiles, the middle lines represents the median, and the whiskers extend to the minimum and maximum values. The %change in urine IL-6: creatinine was significantly lower in the minocycline group vs. the placebo group (mean % change -0.13 vs. 0.60, P = 0.03).
Fig 6. Spaghetti plots of the urine…
Fig 6. Spaghetti plots of the urine osteoprotegerin: Creatinine measurements of each patient in the study from baseline to 6 months (end of trial).
Baseline urine values were not available for 3 subjects.
Fig 7. % change in 24-hour urine…
Fig 7. % change in 24-hour urine osteoprotegerin: creatinine measurements from baseline to 6 months in placebo and minocycline groups.
The edges of the boxes represent the 25% and 75% percentiles, the middle lines represents the median, and the whiskers extend to the minimum and maximum values. The %change in urine osteoprotegerin: creatinine was significantly lower in the minocycline group vs. the placebo group (mean % change -0.09 vs. 0.25, P = 0.046).
Fig 8. Relationship between changes in urine…
Fig 8. Relationship between changes in urine IL-6 and proteinuria in minocycline and placebo patients.
The slope of the regression curve for placebo-treated patients is not different from zero (p> 0.05). The slope of the regression curve for minocycline-treated patients is different from zero (p

Fig 9. Spaghetti plots of the creatinine…

Fig 9. Spaghetti plots of the creatinine clearance measurements of each patient in the study…

Fig 9. Spaghetti plots of the creatinine clearance measurements of each patient in the study over the course of the trial.
All figures (9)
Fig 9. Spaghetti plots of the creatinine…
Fig 9. Spaghetti plots of the creatinine clearance measurements of each patient in the study over the course of the trial.

References

    1. Mann JF, Schmieder RE, McQueen M, Dyal L, Schumacher H, Pogue J, et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet. 2008;372(9638):547–53. Epub 2008/08/19. 10.1016/S0140-6736(08)61236-2 .
    1. Fried LF, Duckworth W, Zhang JH, O'Connor T, Brophy M, Emanuele N, et al. Design of Combination Angiotensin Receptor Blocker and Angiotensin-Converting Enzyme Inhibitor for Treatment of Diabetic Nephropathy (VA NEPHRON-D). Clinical Journal of the American Society of Nephrology. 2009;4(2):361–8. 10.2215/cjn.03350708
    1. de Boer RA, Azizi M, Danser AJ, Nguyen G, Nussberger J, Ruilope LM, et al. Dual RAAS suppression: recent developments and implications in light of the ALTITUDE study. Journal of Renin-Angiotensin-Aldosterone System. 2012;13(3):409–12. 10.1177/1470320312455271
    1. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, et al. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492–503. Epub 2013/11/12. 10.1056/NEJMoa1306033 .
    1. Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care. 2005;28(11):2686–90. Epub 2005/10/27. .
    1. Adler SG, Schwartz S, Williams ME, Arauz-Pacheco C, Bolton WK, Lee T, et al. Phase 1 Study of Anti-CTGF Monoclonal Antibody in Patients with Diabetes and Microalbuminuria. Clinical Journal of the American Society of Nephrology. 2010;5(8):1420–8. 10.2215/cjn.09321209
    1. Bolton WK, Cattran DC, Williams ME, Adler SG, Appel GB, Cartwright K, et al. Randomized Trial of an Inhibitor of Formation of Advanced Glycation End Products in Diabetic Nephropathy. American Journal of Nephrology. 2004;24(1):32–40.
    1. Packham DK, Wolfe R, Reutens AT, Berl T, Heerspink HL, Rohde R, et al. Sulodexide Fails to Demonstrate Renoprotection in Overt Type 2 Diabetic Nephropathy. Journal of the American Society of Nephrology. 2012;23(1):123–30. 10.1681/asn.2011040378
    1. Jordan J, Fernandez-Gomez FJ, Ramos M, Ikuta I, Aguirre N, Galindo MF. Minocycline and cytoprotection: shedding new light on a shadowy controversy. Current drug delivery. 2007;4(3):225–31. Epub 2007/07/14. .
    1. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, et al. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes. 2005;54(5):1559–65. Epub 2005/04/28. .
    1. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J, et al. Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med. 2007;13(11):1349–58. .
    1. Aggarwal HK J D, Talapatra P, Yadav RK, Gupta T, and Kathuria KL. Evaluation of role of doxycycline (a matrix metalloproteinase inhibitor) on renal functions in patients of diabetic nephropathy. Renal Failure. 2010;32(8):941–46. 10.3109/0886022X.2010.502606
    1. Naini AE, Harandi AA, Moghtaderi J, Bastani B, Amiran A. Doxycycline: a pilot study to reduce diabetic proteinuria. Am J Nephrol. 2007;27(3):269–73. Epub 2007/04/13. 10.1159/000101726 .
    1. Knowler WC, Coresh J, Elston RC, Freedman BI, Iyengar SK, Kimmel PL, et al. The Family Investigation of Nephropathy and Diabetes (FIND): design and methods. Journal of diabetes and its complications. 2005;19(1):1–9. Epub 2005/01/12. 10.1016/j.jdiacomp.2003.12.007 .
    1. Lawson TM, Amos N, Bulgen D, Williams BD. Minocycline-induced lupus: clinical features and response to rechallenge. Rheumatology (Oxford, England). 2001;40(3):329–35. Epub 2001/04/04. .
    1. Lenert P, Icardi M, Dahmoush L. ANA (+) ANCA (+) systemic vasculitis associated with the use of minocycline: case-based review. Clinical rheumatology. 2013;32(7):1099–106. Epub 2013/04/23. 10.1007/s10067-013-2245-z .
    1. Cukras CA, Petrou P, Chew EY, Meyerle CB, Wong WT. Oral minocycline for the treatment of diabetic macular edema (DME): results of a phase I/II clinical study. Investigative ophthalmology & visual science. 2012;53(7):3865–74. Epub 2012/05/17. 10.1167/iovs.11-9413
    1. Syngle A, Verma I, Krishan P, Garg N, Syngle V. Minocycline improves peripheral and autonomic neuropathy in type 2 diabetes: MIND study. Neurological sciences: official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2014;35(7):1067–73. Epub 2014/02/06. 10.1007/s10072-014-1647-2 .
    1. Kraus RL, Pasieczny R, Lariosa-Willingham K, Turner MS, Jiang A, Trauger JW. Antioxidant properties of minocycline: neuroprotection in an oxidative stress assay and direct radical-scavenging activity. Journal of neurochemistry. 2005;94(3):819–27. Epub 2005/07/22. 10.1111/j.1471-4159.2005.03219.x .
    1. Choi SH, Lee DY, Chung ES, Hong YB, Kim SU, Jin BK. Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. Journal of neurochemistry. 2005;95(6):1755–65. Epub 2005/10/13. .
    1. Familian A, Boshuizen RS, Eikelenboom P, Veerhuis R. Inhibitory effect of minocycline on amyloid beta fibril formation and human microglial activation. Glia. 2006;53(3):233–40. Epub 2005/10/13. 10.1002/glia.20268 .
    1. Seabrook TJ, Jiang L, Maier M, Lemere CA. Minocycline affects microglia activation, Abeta deposition, and behavior in APP-tg mice. Glia. 2006;53(7):776–82. Epub 2006/03/15. 10.1002/glia.20338 .
    1. Fernandez-Gomez FJ, Galindo MF, Gomez-Lazaro M, Gonzalez-Garcia C, Cena V, Aguirre N, et al. Involvement of mitochondrial potential and calcium buffering capacity in minocycline cytoprotective actions. Neuroscience. 2005;133(4):959–67. Epub 2005/06/21. 10.1016/j.neuroscience.2005.03.019 .
    1. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417(6884):74–8. Epub 2002/05/03. 10.1038/417074a .
    1. Wei X, Zhao L, Liu J, Dodel RC, Farlow MR, Du Y. Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation. Neuroscience. 2005;131(2):513–21. Epub 2005/02/15. 10.1016/j.neuroscience.2004.11.014 .
    1. Nikodemova M, Duncan ID, Watters JJ. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IkappaBalpha degradation in a stimulus-specific manner in microglia. Journal of neurochemistry. 2006;96(2):314–23. Epub 2005/12/13. 10.1111/j.1471-4159.2005.03520.x .
    1. Kang SW, Adler SG, Lapage J, Natarajan R. p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int. 2001;60(2):543–52. Epub 2001/07/28. 10.1046/j.1523-1755.2001.060002543.x .
    1. Kang SW, Natarajan R, Shahed A, Nast CC, LaPage J, Mundel P, et al. Role of 12-lipoxygenase in the stimulation of p38 mitogen-activated protein kinase and collagen alpha5(IV) in experimental diabetic nephropathy and in glucose-stimulated podocytes. J Am Soc Nephrol. 2003;14(12):3178–87. Epub 2003/11/26. .
    1. Kelly KJ, Sutton TA, Weathered N, Ray N, Caldwell EJ, Plotkin Z, et al. Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. American journal of physiology Renal physiology. 2004;287(4):F760–6. Epub 2004/06/03. 10.1152/ajprenal.00050.2004 .
    1. Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat model of ischemic renal injury. American journal of physiology Renal physiology. 2005;288(1):F91–7. Epub 2004/09/09. 10.1152/ajprenal.00051.2004 .
    1. Wang J, Wei Q, Wang CY, Hill WD, Hess DC, Dong Z. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem. 2004;279(19):19948–54. Epub 2004/03/09. 10.1074/jbc.M313629200 .
    1. Tuttle KR. Linking metabolism and immunology: diabetic nephropathy is an inflammatory disease. J Am Soc Nephrol. 2005;16(6):1537–8. Epub 2005/05/06. 10.1681/asn.2005040393 .
    1. Funatsu H, Yamashita H, Noma H, Mimura T, Yamashita T, Hori S. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. American journal of ophthalmology. 2002;133(1):70–7. Epub 2002/01/05. .
    1. Shikano M, Sobajima H, Yoshikawa H, Toba T, Kushimoto H, Katsumata H, et al. Usefulness of a highly sensitive urinary and serum IL-6 assay in patients with diabetic nephropathy. Nephron. 2000;85(1):81–5. Epub 2000/04/25. 45634. .
    1. Navarro JF, Milena FJ, Mora C, Leon C, Garcia J. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol. 2006;26(6):562–70. Epub 2006/12/15. 10.1159/000098004 .
    1. Suzuki D, Miyazaki M, Naka R, Koji T, Yagame M, Jinde K, et al. In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetes. 1995;44(10):1233–8. Epub 1995/10/01. .
    1. Wolkow PP, Niewczas MA, Perkins B, Ficociello LH, Lipinski B, Warram JH, et al. Association of urinary inflammatory markers and renal decline in microalbuminuric type 1 diabetics. J Am Soc Nephrol. 2008;19(4):789–97. Epub 2008/02/08. 10.1681/asn.2007050556
    1. Senatorski G, Paczek L, Kropiewnicka E, Bartlomiejczyk I. [Cytokines in noninvasive diagnostics of diabetic nephropathy progression]. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego. 2002;13 Suppl 1:28–32. Epub 2003/03/08. .
    1. Campbell JH, Burdo TH, Autissier P, Bombardier JP, Westmoreland SV, Soulas C, et al. Minocycline inhibition of monocyte activation correlates with neuronal protection in SIV neuroAIDS. PLoS One. 2011;6(4):e18688 Epub 2011/04/16. 10.1371/journal.pone.0018688
    1. Libbey JE, Kennett NJ, Wilcox KS, White HS, Fujinami RS. Interleukin-6, produced by resident cells of the central nervous system and infiltrating cells, contributes to the development of seizures following viral infection. Journal of virology. 2011;85(14):6913–22. Epub 2011/05/06. 10.1128/jvi.00458-11
    1. Ataie-Kachoie P, Morris DL, Pourgholami MH. Minocycline suppresses interleukine-6, its receptor system and signaling pathways and impairs migration, invasion and adhesion capacity of ovarian cancer cells: in vitro and in vivo studies. PLoS One. 2013;8(4):e60817 Epub 2013/04/18. 10.1371/journal.pone.0060817
    1. Switzer JA, Sikora A, Ergul A, Waller JL, Hess DC, Fagan SC. Minocycline prevents IL-6 increase after acute ischemic stroke. Translational stroke research. 2012;3(3):363–8. Epub 2012/10/30. 10.1007/s12975-012-0150-4
    1. Knudsen ST, Foss CH, Poulsen PL, Andersen NH, Mogensen CE, Rasmussen LM. Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. European journal of endocrinology / European Federation of Endocrine Societies. 2003;149(1):39–42. Epub 2003/06/26. .
    1. Reinhard H, Nybo M, Hansen PR, Wiinberg N, Kjaer A, Petersen CL, et al. Osteoprotegerin and coronary artery disease in type 2 diabetic patients with microalbuminuria. Cardiovascular diabetology. 2011;10:70 Epub 2011/08/02. 10.1186/1475-2840-10-70
    1. Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, et al. Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation. 2004;109(18):2175–80. Epub 2004/05/01. 10.1161/ .
    1. Mikami S, Hamano T, Fujii N, Nagasawa Y, Isaka Y, Moriyama T, et al. Serum osteoprotegerin as a screening tool for coronary artery calcification score in diabetic pre-dialysis patients. Hypertension research: official journal of the Japanese Society of Hypertension. 2008;31(6):1163–70. Epub 2008/08/22. 10.1291/hypres.31.1163 .
    1. Jorsal A, Tarnow L, Flyvbjerg A, Parving HH, Rossing P, Rasmussen LM. Plasma osteoprotegerin levels predict cardiovascular and all-cause mortality and deterioration of kidney function in type 1 diabetic patients with nephropathy. Diabetologia. 2008;51(11):2100–7. Epub 2008/08/23. 10.1007/s00125-008-1123-8 .
    1. Kiani AN, Johnson K, Chen C, Diehl E, Hu H, Vasudevan G, et al. Urine osteoprotegerin and monocyte chemoattractant protein-1 in lupus nephritis. The Journal of rheumatology. 2009;36(10):2224–30. Epub 2009/08/04. 10.3899/jrheum.081112 .

Source: PubMed

3
S'abonner