Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats

Ryan du Preez, Stephen Wanyonyi, Peter Mouatt, Sunil K Panchal, Lindsay Brown, Ryan du Preez, Stephen Wanyonyi, Peter Mouatt, Sunil K Panchal, Lindsay Brown

Abstract

Saskatoon berry (Amelanchier alnifolia) is a potential functional food containing anthocyanins and flavonols, as well as ellagitannins and phenolic acids. We have determined the potential therapeutic effects of Saskatoon berry in diet-induced metabolic syndrome. Nine- to ten-week-old male Wistar rats were randomly assigned to four groups. Two groups were fed on control diets, either corn starch (C) or high-carbohydrate, high-fat diet (H) respectively, for 16 weeks. Two further groups were fed on C or H diet for 16 weeks with Saskatoon berry powder added to the diet for the final 8 weeks (CSSK, HSSK). After 16 weeks, H rats showed symptoms of metabolic syndrome, including increased body weight, visceral adiposity, systolic blood pressure, cardiac fibrosis, plasma concentrations of triglycerides and non-esterified fatty acids, and plasma activities of alanine transaminase and aspartate transaminase. Saskatoon berry intervention normalised body weight and adiposity, improved glucose tolerance, decreased systolic blood pressure, improved heart and liver structure and function with decreased infiltration of inflammatory cells, and decreased plasma total cholesterol. Further, Saskatoon berry normalised liver expression of hexokinase 1 and glycogen phosphorylase and increased glucose 6-phosphatase relative to H rats. These results suggest that Saskatoon berry regulates glycolysis, gluconeogenesis and glycogenesis to improve metabolic syndrome.

Keywords: Amelanchier alnifolia; Saskatoon berry; anthocyanin; flavonoid; inflammation; metabolic syndrome; obesity.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
(A) Twelve-hour indirect calorimeter data for respiratory exchange ratio and (B) heat production. End-point means with unlike superscripts differ (a or b), p < 0.05. C: corn starch diet-fed rats; CSSK: corn starch diet-fed rats supplemented with Saskatoon berry powder; H: high-carbohydrate, high-fat diet-fed rats; HSSK: high-carbohydrate, high-fat diet-fed rats supplemented with Saskatoon berry powder.
Figure 2
Figure 2
Ileum (top row) and colon (bottom row) structure using haematoxylin and eosin stain in corn starch diet-fed rats (A,E), corn starch diet-fed rats supplemented with Saskatoon berry powder (B,F), high-carbohydrate, high-fat diet-fed rats (C,G) and high-carbohydrate, high-fat diet-fed rats supplemented with Saskatoon berry powder (D,H). The yellow scale bar is 100 µm (10×).
Figure 3
Figure 3
Heart histology: infiltrated inflammatory cells (top row—“iic”) using haematoxylin and eosin stain; collagen deposition (middle row—“cd”) using picrosirius red stain. Liver histology: fat vacuoles (bottom row—“fv”) using haematoxylin and eosin stain in corn starch diet-fed rats (A,E,I); corn starch diet-fed rats supplemented with Saskatoon berry powder (B,F,J); high-carbohydrate, high-fat diet-fed rats (C,G,K); and high-carbohydrate, high-fat diet-fed rats supplemented with Saskatoon berry powder (D,H,L). The yellow scale bar is 200 µm (20×).
Figure 4
Figure 4
Saskatoon berry supplementation on gene expression of enzymes and transcription factors involved in liver glucose and lipid metabolism. The fold change relative to C was derived from technical duplicates of liver cDNA from three rats per treatment group. Error bars are presented as standard deviations. Changes in gene expression were considered significant if the p value was <0.05.

References

    1. Seeram N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008;56:627–629. doi: 10.1021/jf071988k.
    1. Grant J., Ryland D., Isaak C.K., Prashar S., Siow Y.L., Taylor C.G., Aliani M. Effect of vitamin D3 fortification and Saskatoon berry syrup addition on the flavor profile, acceptability, and antioxidant properties of rooibos tea (Aspalathus linearis) J. Food Sci. 2017;82:807–817. doi: 10.1111/1750-3841.13646.
    1. Lachowicz S., Oszmianski J., Pluta S. The composition of bioactive compounds and antioxidant activity of Saskatoon berry (Amelanchier alnifolia Nutt.) genotypes grown in central Poland. Food Chem. 2017;235:234–243. doi: 10.1016/j.foodchem.2017.05.050.
    1. Nile S.H., Park S.W. Edible berries: Bioactive components and their effect on human health. Nutrition. 2014;30:134–144. doi: 10.1016/j.nut.2013.04.007.
    1. Szajdek A., Borowska E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008;63:147–156. doi: 10.1007/s11130-008-0097-5.
    1. Lachowicz S., Seliga L., Pluta S. Distribution of phytochemicals and antioxidative potency in fruit peel, flesh, and seeds of Saskatoon berry. Food Chem. 2020;305:125430. doi: 10.1016/j.foodchem.2019.125430.
    1. Juriková T., Balla S., Sochor J., Pohanka M., Mlcek J., Baron M. Flavonoid profile of Saskatoon berries (Amelanchier alnifolia Nutt.) and their health promoting effects. Molecules. 2013;18:12571–12586. doi: 10.3390/molecules181012571.
    1. Meczarska K., Cyboran-Mikolajczyk S., Wloch A., Bonarska-Kujawa D., Oszmianski J., Kleszczynska H. Polyphenol content and bioactivity of Saskatoon (Amelanchier alnifolia Nutt.) leaves and berries. Acta Pol. Pharm. 2017;74:660–669.
    1. Hosseinian F.S., Beta T. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. J. Agric. Food Chem. 2007;55:10832–10838. doi: 10.1021/jf072529m.
    1. O’Neill S., O’Driscoll L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015;16:1–12. doi: 10.1111/obr.12229.
    1. Brown L., Poudyal H., Panchal S.K. Functional foods as potential therapeutic options for metabolic syndrome. Obes. Rev. 2015;16:914–941. doi: 10.1111/obr.12313.
    1. Panchal S.K., Poudyal H., Iyer A., Nazer R., Alam A., Diwan V., Kauter K., Sernia C., Campbell F., Ward L., et al. High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J. Cardiovasc. Pharmacol. 2011;57:611–624. doi: 10.1097/FJC.0b013e3181feb90a.
    1. Poudyal H., Panchal S., Brown L. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome. Br. J. Nutr. 2010;104:1322–1332. doi: 10.1017/S0007114510002308.
    1. Bhaswant M., Fanning K., Netzel M., Mathai M.L., Panchal S.K., Brown L. Cyanidin 3-glucoside improves diet-induced metabolic syndrome in rats. Pharmacol. Res. 2015;102:208–217. doi: 10.1016/j.phrs.2015.10.006.
    1. Bhaswant M., Shafie S.R., Mathai M.L., Mouatt P., Brown L. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition. 2017;41:24–31. doi: 10.1016/j.nut.2016.12.009.
    1. Panchal S.K., Poudyal H., Arumugam T.V., Brown L. Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats. J. Nutr. 2011;141:1062–1069. doi: 10.3945/jn.111.137877.
    1. Panchal S.K., Poudyal H., Brown L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J. Nutr. 2012;142:1026–1032. doi: 10.3945/jn.111.157263.
    1. Bhandarkar N.S., Brown L., Panchal S.K. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr. Res. 2019;62:78–88. doi: 10.1016/j.nutres.2018.11.002.
    1. Panchal S.K., Brown L. Cardioprotective and hepatoprotective effects of ellagitannins from European oak bark (Quercus petraea L.) extract in rats. Eur. J. Nutr. 2013;52:397–408. doi: 10.1007/s00394-011-0277-1.
    1. Zhao R., Khafipour E., Sepehri S., Huang F., Beta T., Shen G.X. Impact of Saskatoon berry powder on insulin resistance and relationship with intestinal microbiota in high fat-high sucrose diet-induced obese mice. J. Nutr. Biochem. 2019;69:130–138. doi: 10.1016/j.jnutbio.2019.03.023.
    1. Riediger N.D., Lix L.M., Lukianchuk V., Bruce S. Trends in diabetes and cardiometabolic conditions in a Canadian First Nation community, 2002–2003 to 2011–2012. Prev. Chronic Dis. 2014;11:E198. doi: 10.5888/pcd11.140334.
    1. Ranasinghe P., Mathangasinghe Y., Jayawardena R., Hills A.P., Misra A. Prevalence and trends of metabolic syndrome among adults in the Asia-acific region: A systematic review. BMC Public Health. 2017;17:101. doi: 10.1186/s12889-017-4041-1.
    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Sekar S., Shafie S.R., Prasadam I., Crawford R., Panchal S.K., Brown L., Xiao Y. Saturated fatty acids induce development of both metabolic syndrome and osteoarthritis in rats. Sci. Rep. 2017;7:46457. doi: 10.1038/srep46457.
    1. Morales-Luna E., Perez-Ramirez I.F., Salgado L.M., Castano-Tostado E., Gomez-Aldapa C.A., Reynoso-Camacho R. The main beneficial effect of roselle (Hibiscus sabdariffa) on obesity is not only related to its anthocyanin content. J. Sci. Food Agric. 2019;99:596–605. doi: 10.1002/jsfa.9220.
    1. Krga I., Milenkovic D. Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. J. Agric. Food Chem. 2019;67:1771–1783. doi: 10.1021/acs.jafc.8b06737.
    1. Naseri R., Farzaei F., Haratipour P., Nabavi S.F., Habtemariam S., Farzaei M.H., Khodarahmi R., Tewari D., Momtaz S. Anthocyanins in the management of metabolic syndrome: A pharmacological and biopharmaceutical review. Front. Pharmacol. 2018;9:1310. doi: 10.3389/fphar.2018.01310.
    1. Lee Y.M., Yoon Y., Yoon H., Park H.M., Song S., Yeum K.J. Dietary anthocyanins against obesity and inflammation. Nutrients. 2017;9:1089. doi: 10.3390/nu9101089.
    1. Song D., Cheng L., Zhang X., Wu Z., Zheng X. The modulatory effect and the mechanism of flavonoids on obesity. J. Food Biochem. 2019;43:e12954. doi: 10.1111/jfbc.12954.
    1. Bondonno C.P., Croft K.D., Ward N., Considine M.J., Hodgson J.M. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr. Rev. 2015;73:216–235. doi: 10.1093/nutrit/nuu014.
    1. Fraga C.G., Croft K.D., Kennedy D.O., Tomas-Barberan F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019;10:514–528. doi: 10.1039/C8FO01997E.
    1. Tajik N., Tajik M., Mack I., Enck P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017;56:2215–2244. doi: 10.1007/s00394-017-1379-1.
    1. Carrera-Quintanar L., López Roa R.I., Quintero-Fabián S., Sánchez-Sánchez M.A., Vizmanos B., Ortuño-Sahagún D. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediat. Inflamm. 2018;2018:9734845. doi: 10.1155/2018/9734845.
    1. de Souza D.R., Willems J.L., Low N.H. Phenolic composition and antioxidant activities of Saskatoon berry fruit and pomace. Food Chem. 2019;290:168–177. doi: 10.1016/j.foodchem.2019.03.077.
    1. Zhao R., Xie X., Le K., Li W., Moghadasian M.H., Beta T., Shen G.X. Endoplasmic reticulum stress in diabetic mouse or glycated LDL-treated endothelial cells: Protective effect of Saskatoon berry powder and cyanidin glycans. J. Nutr. Biochem. 2015;26:1248–1253. doi: 10.1016/j.jnutbio.2015.05.015.
    1. Lachowicz S., Wisniewski R., Ochmian I., Drzymala K., Pluta S. Anti-microbiological, anti-hyperglycemic and anti-obesity potency of natural antioxidants in fruit fractions of Saskatoon berry. Antioxidants. 2019;8:397. doi: 10.3390/antiox8090397.
    1. Fang J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014;46:508–520. doi: 10.3109/03602532.2014.978080.
    1. Fang J. Some anthocyanins could be efficiently absorbed across the gastrointestinal mucosa: Extensive presystemic metabolism reduces apparent bioavailability. J. Agric. Food Chem. 2014;62:3904–3911. doi: 10.1021/jf405356b.
    1. Fang J., Huang J. Accumulation of plasma levels of anthocyanins following multiple saskatoon berry supplements. Xenobiotica. 2020;50:454–457. doi: 10.1080/00498254.2019.1637967.
    1. Nicholson K.M., Anderson N.G. The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal. 2002;14:381–395. doi: 10.1016/S0898-6568(01)00271-6.
    1. Takata M., Ogawa W., Kitamura T., Hino Y., Kuroda S., Kotani K., Klip A., Gingras A.C., Sonenberg N., Kasuga M. Requirement for Akt (protein kinase B) in insulin-induced activation of glycogen synthase and phosphorylation of 4E-BP1 (PHAS-1) J. Biol. Chem. 1999;274:20611–20618. doi: 10.1074/jbc.274.29.20611.
    1. Minchenko A., Leshchinsky I., Opentanova I., Sang N., Srinivas V., Armstead V., Caro J. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J. Biol. Chem. 2002;277:6183–6187. doi: 10.1074/jbc.M110978200.
    1. Hahn-Windgassen A., Nogueira V., Chen C.C., Skeen J.E., Sonenberg N., Hay N. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 2005;280:32081–32089. doi: 10.1074/jbc.M502876200.
    1. Massa M.L., Gagliardino J.J., Francini F. Liver glucokinase: An overview on the regulatory mechanisms of its activity. IUBMB Life. 2011;63:1–6. doi: 10.1002/iub.411.
    1. Ferrer J.C., Favre C., Gomis R.R., Fernandez-Novell J.M., Garcia-Rocha M., de la Iglesia N., Cid E., Guinovart J.J. Control of glycogen deposition. FEBS Lett. 2003;546:127–132. doi: 10.1016/S0014-5793(03)00565-9.
    1. Stoffel M., Froguel P., Takeda J., Zouali H., Vionnet N., Nishi S., Weber I.T., Harrison R.W., Pilkis S.J., Lesage S., et al. Human glucokinase gene: Isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc. Natl. Acad. Sci. USA. 1992;89:7698–7702. doi: 10.1073/pnas.89.16.7698.
    1. Bell G.I., Kayano T., Buse J.B., Burant C.F., Takeda J., Lin D., Fukumoto H., Seino S. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990;13:198–208. doi: 10.2337/diacare.13.3.198.
    1. Han H.S., Kang G., Kim J.S., Choi B.H., Koo S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016;48:e218. doi: 10.1038/emm.2015.122.
    1. Newsholme E.A., Brand K., Lang J., Stanley J.C., Williams T. The maximum activities of enzymes that are involved in substrate cycles in liver and muscle of obese mice. Biochem. J. 1979;182:621–624. doi: 10.1042/bj1820621.
    1. Newsholme E.A., Parry-Billings M. Some evidence for the existence of substrate cycles and their utility in vivo. Biochem. J. 1992;285:340–341. doi: 10.1042/bj2850340.
    1. Newsholme E.A., Stanley J.C. Substrate cycles: Their role in control of metabolism with specific references to the liver. Diabetes Metab. Rev. 1987;3:295–305. doi: 10.1002/dmr.5610030113.
    1. Parry-Billings M., Newsholme E.A. The possible role of glutamine substrate cycles in skeletal muscle. Biochem. J. 1991;279:327–328. doi: 10.1042/bj2790327.
    1. Clark D.G., Filsell O.H., Topping D.L. Effects of fructose concentration on carbohydrate metabolism, heat production and substrate cycling in isolated rat hepatocytes. Biochem. J. 1979;184:501–507. doi: 10.1042/bj1840501.
    1. Geidl-Flueck B., Gerber P.A. Insights into the hexose liver metabolism-glucose versus fructose. Nutrients. 2017;9:1026. doi: 10.3390/nu9091026.
    1. Valery P.C., Moloney A., Cotterill A., Harris M., Sinha A.K., Green A.C. Prevalence of obesity and metabolic syndrome in Indigenous Australian youths. Obes. Rev. 2009;10:255–261. doi: 10.1111/j.1467-789X.2008.00545.x.
    1. Juonala M., Singh G.R., Davison B., van Schilfgaarde K., Skilton M.R., Sabin M.A., Cheung M., Sayers S., Burgner D.P. Childhood metabolic syndrome, inflammation and carotid intima-media thickness. The Aboriginal Birth Cohort Study. Int. J. Cardiol. 2016;203:32–36. doi: 10.1016/j.ijcard.2015.10.073.
    1. Batal M., Decelles S. A scoping review of obesity among Indigenous peoples in Canada. J. Obes. 2019;2019:9741090. doi: 10.1155/2019/9741090.
    1. Kelly L., Matsumoto C.L., Schreiber Y., Gordon J., Willms H., Olivier C., Madden S., Hopko J., Tobe S.W. Prevalence of chronic kidney disease and cardiovascular comorbidities in adults in First Nations communities in northwest Ontario: A retrospective observational study. CMAJ Open. 2019;7:E568–E572. doi: 10.9778/cmajo.20190040.
    1. de Schweinitz P.A., Wojcicki J.M. First Nations approaches to childhood obesity: Healthy lifestyles in Canada compared with alternatives for Alaska native communities. Children. 2017;4:38. doi: 10.3390/children4050038.

Source: PubMed

3
S'abonner