Ginsenosides: A Potential Neuroprotective Agent

Mengmeng Zheng, Yizhou Xin, Yujuan Li, Fangxue Xu, Xiaozhi Xi, Hong Guo, Xiaowei Cui, Hui Cao, Xi Zhang, Chunchao Han, Mengmeng Zheng, Yizhou Xin, Yujuan Li, Fangxue Xu, Xiaozhi Xi, Hong Guo, Xiaowei Cui, Hui Cao, Xi Zhang, Chunchao Han

Abstract

Ginseng is a traditional Chinese medicine with a wide range of pharmacological activities. Ginsenosides are the major constituents of ginseng. Ginsenosides have the unique biological activity and medicinal value, such as antitumor, anti-inflammatory, antioxidation, and inhibition of cell apoptosis. With the increase of stress in life, the incidence of nervous system diseases is also increasing. Neurological diseases pose a huge burden on people's life and health. In recent years, some studies have shown that ginsenosides have a certain role in the prevention and treatment of neurological diseases. However, the research is still in its infancy, and the relevant mechanisms are complex. In the paper, we review the effects and mechanisms of ginsenosides on epilepsy, depression, cerebral ischemia reperfusion injury, Alzheimer's disease, and Parkinson's disease. We hope to provide a theoretical basis for the treatment of nervous system diseases by ginsenosides.

Figures

Figure 1
Figure 1
Chemical structure of Panaxadiol, Panaxatriol, and Oleanolic acid group.
Figure 2
Figure 2
The effect of ginsensides on nervous system disease, mainly including epilepsy, depression, cerebral ischemia reperfusion injury, Alzheimer's disease, and Parkinson's disease.
Figure 3
Figure 3
Several neuroprotection mechanisms of ginsenosides.

References

    1. Kim J.-H. Cardiovascular diseases and panax ginseng: a review on molecular mechanisms and medical applications. 2012;36(1):16–26. doi: 10.5142/jgr.2012.36.1.16.
    1. Sun Y., Liu Y., Chen K. Roles and mechanisms of ginsenoside in cardiovascular diseases: progress and perspectives. 2016;59(3):292–298. doi: 10.1007/s11427-016-5007-8.
    1. Wang Q., Li H.-x., Liu L.-m., et al. The effect Panax ginseng tonic in the treatment of alzheimer's disease. 2016;38(22):3460–3465.
    1. Guo C.-L., Cui X.-M., Yang X.-Y., Wu S. Advances in studies on biotransformation of ginsensides. 2014;39(20):3899–3904.
    1. Shin K.-C., Oh D.-K. Characterization of a novel recombinant β-glucosidase from Sphingopyxis alaskensis that specifically hydrolyzes the outer glucose at the C-3 position in protopanaxadiol-type ginsenosides. 2014;172(1):30–37. doi: 10.1016/j.jbiotec.2013.11.026.
    1. Wang L., Zhao S.-J., Liang Y.-L., Sun Y., Cao H.-J., Han Y. Identification of the protopanaxatriol synthase gene CYP6H for ginsenoside biosynthesis in Panax quinquefolius. 2014;14(3):559–570. doi: 10.1007/s10142-014-0386-z.
    1. Cui C.-H., Kim D. J., Jung S.-C., Kim S.-C., Im W.-T. Enhanced production of gypenoside LXXV using a novel ginsenoside-transforming β-glucosidase from ginseng-cultivating soil bacteria and its anti-cancer property. 2017;22(5, article no. 844) doi: 10.3390/molecules22050844.
    1. Li W., Yan M.-H., Liu Y., et al. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. 2016;8(9, article no. 566) doi: 10.3390/nu8090566.
    1. Li C. P., Zhang M. S., Liu J., et al. Research of anti-aging mechanism of ginsenoside Rg1 on brain. 2014;39(22):4442–4447.
    1. Tan S., Zhou F., Li N. Anti-fatigue effect of ginsenoside Rb1 on postoperative fatigue syndrome induced by major small intestinal resection in rat. 2013;36(10):1634–1639. doi: 10.1248/bpb.b13-00522.
    1. Ahmed T., Raza S. H., Maryam A. Ginsenoside Rb1 as a neuroprotective agent: a review. 2016;125:30–43. doi: 10.1016/j.brainresbull.2016.04.002.
    1. González-Burgos E., Fernandez-Moriano C., Gómez-Serranillos M. P. Potential Neuroprotective Activity of Ginseng in Parkinson’s Disease: A Review. 2015;10(1):14–29. doi: 10.1007/s11481-014-9569-6.
    1. Zhang G., Liu A., Zhou Y., San X., Jin T., Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. 2007;115(3):441–448. doi: 10.1016/j.jep.2007.10.026.
    1. Wang W. X., Wang W., Chen K. J. Protective effect and mechanism of ginsenosides on central nerve system of animals. 2005;25(1):189–193.
    1. Xu F. X. Ginsenoside is considered to be of great value in treating epilepsy. 2015;22(15, article 21)
    1. Wu C., Chen J., Xie X., Ru D. F. The influence of Ginseng ginsenosides Rb1 for epilepsy rat hippocampal neurons. 2013;10(2):41–42.
    1. Moshé S. L., Perucca E., Ryvlin P., Tomson T. Epilepsy: New advances. 2015;385(9971):884–898. doi: 10.1016/S0140-6736(14)60456-6.
    1. Lian X.-Y., Zhang Z.-Z., Stringer J. L. Anticonvulsant activity of ginseng on seizures induced by chemical convulsants. 2005;46(1):15–22. doi: 10.1111/j.0013-9580.2005.40904.x.
    1. Lian X.-Y., Zhang Z., Stringer J. L. Anticonvulsant and neuroprotective effects of ginsenosides in rats. 2006;70(2-3):244–256. doi: 10.1016/j.eplepsyres.2006.05.010.
    1. Kim S., Rhim H. Ginsenosides inhibit NMDA receptor-mediated epileptic discharges in cultured hippocampal neurons. 2004;27(5):524–530. doi: 10.1007/BF02980126.
    1. Shin E.-J., Koh Y. H., Kim A.-Y., et al. Ginsenosides attenuate kainic acid-induced synaptosomal oxidative stress via stimulation of adenosine A2A receptors in rat hippocampus. 2009;197(1):239–245. doi: 10.1016/j.bbr.2008.08.038.
    1. Moussavi S., Chatterji S., Verdes E., Tandon A., Patel V., Ustun B. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. 2007;370(9590):851–858. doi: 10.1016/S0140-6736(07)61415-9.
    1. Lépine J.-P., Briley M. The increasing burden of depression. 2011;7:3–7. doi: 10.2147/NDT.S19617.
    1. Wong M.-L., Licinio J. Research and treatment approaches to depression. 2001;2(5):343–351. doi: 10.1038/35072566.
    1. Sohlberg S. Personality, life stress and the course of eating disorders. 1990;82(s361):29–33. doi: 10.1111/j.1600-0447.1990.tb10751.x.
    1. Zhu W., Ma S., Qu R., Kang D. Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism. 2006;79(8):749–756. doi: 10.1016/j.lfs.2006.02.015.
    1. Lee K. J., Ji G. E. The effect of fermented red ginseng on depression is mediated by lipids. 2014;17(1):7–15. doi: 10.1179/1476830513Y.0000000059.
    1. Cui J., Jiang L., Xiang H. Ginsenoside Rb3 exerts antidepressant-like effects in several animal models. 2012;26(5):697–713. doi: 10.1177/0269881111415735.
    1. Zhang H., Li Z., Zhou Z., Yang H., Zhong Z., Lou C. Antidepressant-like effects of ginsenosides: A comparison of ginsenoside Rb3 and its four deglycosylated derivatives, Rg3, Rh2, compound K, and 20(S)-protopanaxadiol in mice models of despair. 2016;140:17–26. doi: 10.1016/j.pbb.2015.10.018.
    1. You Z., Yao Q., Shen J., et al. Antidepressant-like effects of ginsenoside Rg3 in mice via activation of the hippocampal BDNF signaling cascade. 2017;71(2):367–379. doi: 10.1007/s11418-016-1066-1.
    1. Jiang B., Xiong Z., Yang J., et al. Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. 2012;166(6):1872–1887. doi: 10.1111/j.1476-5381.2012.01902.x.
    1. Liu Z., Qi Y., Cheng Z., Zhu X., Fan C., Yu S. Y. The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats. 2016;322:358–369. doi: 10.1016/j.neuroscience.2016.02.050.
    1. Lee B., Shim I., Lee H., Hahm D.-H. Effect of ginsenoside Re on depression- and anxiety-like behaviors and cognition memory deficit induced by repeated immobilization in rats. 2012;22(5):708–720. doi: 10.4014/jmb.1112.12046.
    1. Yamada N., Araki H., Yoshimura H. Identification of antidepressant-like ingredients in ginseng root (Panax ginseng C.A. Meyer) using a menopausal depressive-like state in female mice: Participation of 5-HT 2A receptors. 2011;216(4):589–599. doi: 10.1007/s00213-011-2252-1.
    1. Wang X., Zeng C., Lin J., et al. Metabonomics approach to assessing the modulatory effects of St John's Wort, ginsenosides, and clomipramine in experimental depression. 2012;11(12):6223–6230. doi: 10.1021/pr300891v.
    1. Kang A., Hao H., Zheng X., et al. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy. 2011;8, article 100 doi: 10.1186/1742-2094-8-100.
    1. Bao C., Wang Y., Min H., et al. Combination of ginsenoside Rg1 and bone marrow mesenchymal stem cell transplantation in the treatment of cerebral ischemia reperfusion injury in rats. 2015;37(3):901–910. doi: 10.1159/000430217.
    1. Zhou Y., Li H. Q., Lu L. Ginsenoside Rg1 provides neuroprotection against blood brain barrier disruption and neurological injury in a rat model of cerebral ischemia/reperfusion through downregulation of aquaporin 4 expression. 2014;21(7):998–1003. doi: 10.1016/j.phymed.2013.12.005.
    1. Yang Y., Li X., Zhang L., Liu L., Jing G., Cai H. Ginsenoside Rg1 suppressed inflammation and neuron apoptosis by activating PPARγ/HO-1 in hippocampus in rat model of cerebral ischemia-reperfusion injury. 2015;8(3):2484–2494.
    1. Xie C.-L., Li J.-H., Wang W.-W., Zheng G.-Q., Wang L.-X. Neuroprotective effect of ginsenoside-Rg1 on cerebral ischemia/reperfusion injury in rats by downregulating protease-activated receptor-1 expression. 2015;121:145–151. doi: 10.1016/j.lfs.2014.12.002.
    1. Sun C., Lai X., Huang X., Zeng Y. Protective effects of ginsenoside Rg1 on astrocytes and cerebral ischemic-reperfusion mice. 2014;37(12):1891–1898. doi: 10.1248/bpb.b14-00394.
    1. Huang X.-P., Ding H., Lu J.-D., Tang Y.-H., Deng B.-X., Deng C.-Q. Effects of the combination of the main active components of Astragalus and Panax notoginseng on inflammation and apoptosis of nerve cell after cerebral ischemia-reperfusion. 2015;43(7):1419–1438. doi: 10.1142/s0192415x15500809.
    1. Zhu J., Jiang Y., Wu L., Lu T., Xu G., Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. 2012;202:342–351. doi: 10.1016/j.neuroscience.2011.11.070.
    1. Lu T., Jiang Y., Zhou Z., et al. Intranasal ginsenoside Rb1 targets the brain and ameliorates cerebral ischemia/reperfusion injury in rats. 2011;34(8):1319–1324. doi: 10.1248/bpb.34.1319.
    1. Zeng X.-S., Zhou X.-S., Luo F.-C., et al. Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia. 2014;92(2):102–108. doi: 10.1139/cjpp-2013-0274.
    1. Liu X.-Y., Zhou X.-Y., Hou J.-C., et al. Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway. 2015;36(4):421–428. doi: 10.1038/aps.2014.156.
    1. Xie Z., Shi M., Zhang C., Zhao H., Hui H., Zhao G. Ginsenoside Rd Protects Against Cerebral Ischemia–Reperfusion Injury Via Decreasing the Expression of the NMDA Receptor 2B Subunit and its Phosphorylated Product. 2016;41(8):2149–2159. doi: 10.1007/s11064-016-1930-0.
    1. Chen L.-M., Zhou X.-M., Cao Y.-L., Hu W.-X. Neuroprotection of ginsenoside Re in cerebral ischemia-reperfusion injury in rats. 2008;10(5):439–445. doi: 10.1080/10286020801892292.
    1. He B., Chen P., Yang J., et al. Neuroprotective effect of 20(R)-ginsenoside Rg3 against transient focal cerebral ischemia in rats. 2012;526(2):106–111. doi: 10.1016/j.neulet.2012.08.022.
    1. Tohda C., Matsumoto N., Zou K., Meselhy M. R., Komatsu K. Aβ(25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by MI, A metabolite of protopanaxadiol-type saponins. 2004;29(5):860–868. doi: 10.1038/sj.npp.1300388.
    1. Wang Y., Liu J., Zhang Z., Bi P., Qi Z., Zhang C. Anti-neuroinflammation effect of ginsenoside Rbl in a rat model of Alzheimer disease. 2011;487(1):70–72. doi: 10.1016/j.neulet.2010.09.076.
    1. Choi R. J., Roy A., Jung H. J., et al. BACE1 molecular docking and anti-Alzheimer's disease activities of ginsenosides. 2016;190:219–230. doi: 10.1016/j.jep.2016.06.013.
    1. Li N., Liu Y., Li W., et al. A uplc/ms-based metabolomics investigation of the protective effect of ginsenosides rg1 and rg2 in mice with alzheimer’s disease. 2016;40(1):9–17. doi: 10.1016/j.jgr.2015.04.006.
    1. Li N., Zhou L., Li W., Liu Y., Wang J., He P. Protective effects of ginsenosides Rg1 and Rb1 on an Alzheimer's disease mouse model: a metabolomics study. 2015;985:54–61. doi: 10.1016/j.jchromb.2015.01.016.
    1. Li F., Wu X., Li J., Niu Q. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model. 2016;13(6):4904–4910. doi: 10.3892/mmr.2016.5103.
    1. Li X., Liu Y., Zhang X., Yuan H., Quan Q. Effect of ginsenoside Rg1 on expressions of phosphory protein Tau and N-methyl-D-aspartate receptor subunits NR1 and NR2B in rat brain slice model of Alzheimer's disease. 2010;35(24):3339–3343. doi: 10.4268/cjcmm20102424.
    1. Zhang X., Wang J., Xing Y., et al. Effects of ginsenoside Rg1 or 17β-estradiol on a cognitively impaired, ovariectomized rat model of Alzheimer's disease. 2012;220:191–200. doi: 10.1016/j.neuroscience.2012.06.027.
    1. Wang Y., Kan H., Yin Y., et al. Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. 2014;120:73–81. doi: 10.1016/j.pbb.2014.02.012.
    1. Mu J.-S., Lin H., Ye J.-X., Lin M., Cui X.-P. Rg1 exhibits neuroprotective effects by inhibiting the endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in a rat model of Alzheimer's disease. 2015;12(3):3862–3868. doi: 10.3892/mmr.2015.3853.
    1. Wang C.-M., Liu M.-Y., Wang F., et al. Anti-amnesic effect of pseudoginsenoside-F11 in two mouse models of Alzheimer's disease. 2013;106:57–67. doi: 10.1016/j.pbb.2013.03.010.
    1. Liu J., Yan X., Li L., et al. Ginsennoside Rd attenuates cognitive dysfunction in a rat model of alzheimer's disease. 2012;37(12):2738–2747. doi: 10.1007/s11064-012-0866-2.
    1. Liu J., Yan X., Li L., et al. Ginsenoside Rd Improves Learning and Memory Ability in APP Transgenic Mice. 2015;57(4):522–528. doi: 10.1007/s12031-015-0632-4.
    1. Jiang W., Wang Z., Jiang Y., Lu M., Li X. Ginsenoside Rg1 ameliorates motor function in an animal model of Parkinson's disease. 2015;96(1-2):25–31. doi: 10.1159/000431100.
    1. Van Kampen J. M., Baranowski D. B., Shaw C. A., Kay D. G. Panax ginseng is neuroprotective in a novel progressive model of Parkinson's disease. 2014;50(1):95–105. doi: 10.1016/j.exger.2013.11.012.
    1. Heng Y., Zhang Q.-S., Mu Z., Hu J.-F., Yuan Y.-H., Chen N.-H. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting α-synuclein abnormalities in the substantia nigra. 2016;243:7–21. doi: 10.1016/j.toxlet.2015.12.005.
    1. Zhou T.-T., Zu G., Wang X., et al. Immunomodulatory and neuroprotective effects of ginsenoside Rg1 in the MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) -induced mouse model of Parkinson's disease. 2015;29(2):334–343. doi: 10.1016/j.intimp.2015.10.032.
    1. Xu L., Chen W. F., Wong M. S. Ginsenoside Rg1 protects dopaminergic neurons in a rat model of Parkinson's disease through the IGF-I receptor signalling pathway. 2009;158(3):738–748. doi: 10.1111/j.1476-5381.2009.00361.x.
    1. Zhou T., Zu G., Zhang X., et al. Neuroprotective effects of ginsenoside Rg1 through the Wnt/β-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. 2016;101(5):480–489. doi: 10.1016/j.neuropharm.2015.10.024.
    1. Livesay S. L. Clinical review and implications of the guideline for the early management of patients with acute ischemic stroke. 2014;25(2):130–141. doi: 10.1097/NCI.0000000000000017.
    1. Strong K., Mathers C., Bonita R. Preventing stroke: saving lives around the world. 2007;6(2):182–187. doi: 10.1016/S1474-4422(07)70031-5.
    1. Feigin V. L., Lawes C. M., Bennett D. A., Barker-Collo S. L., Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. 2009;8(4):355–369. doi: 10.1016/S1474-4422(09)70025-0.
    1. Aleshin S., Strokin M., Sergeeva M., Reiser G. Peroxisome proliferator-activated receptor (PPAR)β/δ, a possible nexus of PPARα- and PPARγ-dependent molecular pathways in neurodegenerative diseases: review and novel hypotheses. 2013;63(4):322–330. doi: 10.1016/j.neuint.2013.06.012.
    1. Park S. Y., Bae J. U., Hong K. W., Kim C. D. HO-1 Induced by Cilostazol Protects Against TNF-α-associated Cytotoxicity via a PPAR-γ-dependent Pathway in Human Endothelial Cells. 2011;15(2):83–88. doi: 10.4196/kjpp.2011.15.2.83.
    1. Shang Y. H., Tian J. F., Hou M., Xu X. Y. Progress on the protective effect of compounds from natural medicines on cerebral ischemia. 2013;11(6):588–595. doi: 10.1016/s1875-5364(13)60068-0.
    1. Hardy J., Selkoe D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. 2002;297(5580):353–356. doi: 10.1126/science.1072994.
    1. Heo J.-H., Lee S.-T., Chu K., et al. Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer's disease. 2012;15(6):278–282. doi: 10.1179/1476830512Y.0000000027.
    1. Wang Z.-J., Sun L., Peng W., et al. Ginseng derivative ocotillol enhances neuronal activity through increased glutamate release: A possible mechanism underlying increased spontaneous locomotor activity of mice. 2011;195:1–8. doi: 10.1016/j.neuroscience.2011.08.002.
    1. Yan S., Li Z., Li H., Arancio O., Zhang W. Notoginsenoside R1 increases neuronal excitability and ameliorates synaptic and memory dysfunction following amyloid elevation. 2014;4, article no. 6352 doi: 10.1038/srep06352.
    1. Lv C., Li Q., Zhang Y., et al. A UFLC-MS/MS method with a switching ionization mode for simultaneous quantitation of polygalaxanthone III, four ginsenosides and tumulosic acid in rat plasma: Application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats. 2013;48(8):904–913. doi: 10.1002/jms.3230.
    1. Zhang Y., Pi Z., Song F., Liu Z. Ginsenosides attenuate D-galactose- and AlCl3-inducedspatial memory impairment by restoring the dysfunction of the neurotransmitter systems in the rat model of Alzheimer's disease. 2016;194:188–195. doi: 10.1016/j.jep.2016.09.007.
    1. Ruiz P. J. G., Catalán M. J., Carril J. M. F. Initial motor symptoms of Parkinson disease. 2011;17(6):S18–S20. doi: 10.1097/NRL.0b013e31823966b4.
    1. Parish C. L., Thompson L. H. Modulating Wnt signaling to improve cell replacement therapy for Parkinson's disease. 2014;6(1):54–63. doi: 10.1093/jmcb/mjt045.

Source: PubMed

3
S'abonner