Oropharyngeal administration of mother's colostrum, health outcomes of premature infants: study protocol for a randomized controlled trial

Nancy A Rodriguez, Maximo Vento, Erika C Claud, Chihsiung E Wang, Michael S Caplan, Nancy A Rodriguez, Maximo Vento, Erika C Claud, Chihsiung E Wang, Michael S Caplan

Abstract

Background: Extremely premature (birth weight < 1250 g) infants are at high risk for acquiring late-onset sepsis and necrotizing enterocolitis, which are associated with significant mortality and morbidity. Own mother's milk contains protective (immune and trophic) biofactors which provide antimicrobial, anti-inflammatory, antioxidant, and immunomodulatory functions, enhance intestinal microbiota, and promote intestinal maturation. Many of these biofactors are most highly concentrated in the milk expressed by mothers of extremely premature infants. However, since extremely premature infants do not receive oral milk feeds until 32 weeks post-conceptional age, they lack the potential benefit provided by milk (biofactor) exposure to oropharyngeal immunocompetent cells, and this deficiency could contribute to late-onset sepsis and necrotizing enterocolitis. Therefore, oropharyngeal administration of own mother's milk may improve the health outcomes of these infants.

Objectives: To compare the effects of oropharyngeal administration of mother's milk to a placebo, for important clinical outcomes, including (1A) reducing the incidence of late-onset sepsis (primary outcome) and (1B) necrotizing enterocolitis and death (secondary outcomes). To identify the biomechanisms responsible for the beneficial effects of oropharyngeal mother's milk for extremely premature infants, including; (2A) enhancement of gastrointestinal (fecal) microbiota (2B) improvement in antioxidant defense maturation or reduction of pro-oxidant status, and (2C) maturation of immunostimulatory effects as measured by changes in urinary lactoferrin.

Methods/design: A 5-year, multi-center, double-blind, randomized controlled trial designed to evaluate the safety and efficacy of oropharyngeal mother's milk to reduce the incidence of (1A) late-onset sepsis and (1B) necrotizing enterocolitis and death in a large cohort of extremely premature infants (n = 622; total patients enrolled). Enrolled infants are randomly assigned to one of 2 groups: Group A infants receive 0.2 mL of own mother's milk, via oropharyngeal administration, every 2 hours for 48 hours, then every 3 hours until 32 weeks corrected-gestational age. Group B infants receive a placebo (0.2 mL sterile water) following the same protocol. Milk, urine, oral mucosal swab, and stool samples are collected at various time points, before, during and after the treatment periods. Health outcome and safety data are collected throughout the infant's stay.

Trial registration: ClinicalTrials.gov identifier: NCT02116699 on 11 April 2014. Last updated: 26 May 2015.

Figures

Fig. 1
Fig. 1
Timeline of the study. After informed consent is obtained, the infant is enrolled, randomized, and begins receiving treatments. The treatments are given until the infant reaches 32 weeks CGA. Health outcome data is collected throughout the infant’s hospitalization until NICU discharge. CGA, corrected gestational age; NICU, neonatal intensive care unit
Fig. 2
Fig. 2
Study flow chart. Enrolled infants are randomized to receive either own mother’s milk or a placebo during the initial treatment period and the extended treatment period. Biological specimens (milk, urine, stool and swab of oral mucosa) are collected at specific time-points as depicted. CGA, corrected gestational age; L-OS, late-onset sepsis; NEC, necrotizing enterocolitis

References

    1. Wilson-Costello D, Friedman H, Minich N, Fanaroff AA, Hack M. Improved survival rates with increased neurodevelopmental disability for extremely low birth weight infants in the 1990s. Pediatrics. 2005;115:997–1003. doi: 10.1542/peds.2004-0221.
    1. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low birth weight infants with neonatal infection. JAMA. 2004;292:2357–65. doi: 10.1001/jama.292.19.2357.
    1. Sallah W, Perlman J, Silver I, Broyles R. Necrotizing enterocolitis and neurodevelopmental outcome in extremely low birth weight infants. J Perinatol. 2004;24:534–40. doi: 10.1038/sj.jp.7211165.
    1. Caplan MS. Neonatal necrotizing enterocolitis. Introduction Semin Perinatol. 2008;32:69. doi: 10.1053/j.semperi.2008.02.001.
    1. Frost BL, Caplan MS. Necrotizing enterocolitis: pathophysiology, platelet-activating factor, and probiotics [Review] Semin Pediatr Surg. 2013;22:88–93. doi: 10.1053/j.sempedsurg.2013.01.005.
    1. Ronnestad A, Abrahamsen TG, Medbo S, Reigstad H, Lossius K, Kaaresen PI, et al. Late-onset septicemia in a Norwegian national cohort of extremely premature infants receiving very early full human milk feeding. Pediatrics. 2005;115:e269–6. doi: 10.1542/peds.2004-1833.
    1. Boghossian NS, Page GP, Bell EF, Stoll BJ, Murray JC, Cotten CM, et al. Late-onset sepsis in very low birth weight infants from singleton and multiple-gestation births. J Pediatr. 2013;162:1120–4. doi: 10.1016/j.jpeds.2012.11.089.
    1. Johnson TJ, Patel AL, Jegier BJ, Engstrom JL, Meier PP. Cost of morbidities in very low birth weight infants. J Pediatr. 2013;162:243–9. doi: 10.1016/j.jpeds.2012.07.013.
    1. Caicedo RA, Schanler RJ, Li NAN, Neu J. The developing intestinal ecosystem: Implications for the neonate. Pediatr Res. 2005;58:625–8. doi: 10.1203/01.PDR.0000180533.09295.84.
    1. Hackam DJ, Upperman JS, Grishin A, Ford HR. Disordered enterocyte signaling and intestinal barrier dysfunction in the pathogenesis of necrotizing enterocolitis. Semin Pediatr Surg. 2005;14:49–57. doi: 10.1053/j.sempedsurg.2004.10.025.
    1. Westerbeek E, van den Berg A, Lafeber HN, Knol J, Fetter WPF, van Elburg RM. The intestinal bacterial colonization in preterm infants: a review of the literature. Clin Nutr. 2006;25:361–8. doi: 10.1016/j.clnu.2006.03.002.
    1. Saiman L. Strategies for prevention of nosocomial sepsis in the neonatal intensive care unit. Curr Opin Pediatr. 2006;18:101–6. doi: 10.1097/01.mop.0000193300.25141.c5.
    1. Claud EC, Walker WA. Bacterial colonization, probiotics and necrotizing enterocolitis. J Clin Gastroenterol. 2008;42:S 46–S51. doi: 10.1097/MCG.0b013e31815a57a8.
    1. Manzoni P, Rinaldi M, Cattani S, Pugni L, Romeo MG, Messner H, et al. Italian Task Force for the Study and Prevention of Neonatal Fungal Infection. Italian Society of Neonatology. Bovine lactoferrin supplementation for prevention of late-onset sepsis in very low birth weight neonates: a randomized trial. JAMA. 2009;302:1421–8. doi: 10.1001/jama.2009.1403.
    1. Manzoni P, Mostert M, Stronati M. Lactoferrin for prevention of neonatal infections. Curr Opin Infect Dis. 2011;24:177–82. doi: 10.1097/QCO.0b013e32834592e6.
    1. Montagne P, Cuilliere ML, Mole C, Bene MC, Faure G. Immunological and nutritional composition of human milk in relation to prematurity and mother’s parity during the first 2 weeks of lactation. J Pediatr Gastroenterol Nutr. 1999;29:75–80. doi: 10.1097/00005176-199907000-00018.
    1. Ronanyne de Ferrar PA, Baroni A, Sambucetti ME, Lopez NE, Cernadas JMC. Lactoferrin levels in term and preterm milk. J Am Coll Nutr. 2000;19:370–73.
    1. Velona T, Abbiati L, Beretta B, Gaiaschi A, Flauto U, Tagliabue P, et al. Protein profiles in breastmilk from mothers delivering term and preterm babies. Pediatr Res. 1999;45:658–63. doi: 10.1203/00006450-199905010-00008.
    1. Frost BL, Caplan MS. Probiotics and prevention of neonatal necrotizing enterocolitis. Curr Opin Pediatr. 2011;23:151–5. doi: 10.1097/MOP.0b013e328343d65f.
    1. Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, et al. 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J. 2009;3:944–54. doi: 10.1038/ismej.2009.37.
    1. Claud EC. Probiotics and neonatal necrotizing enterocolitis. Anaerobe. 2011;17:180–5. doi: 10.1016/j.anaerobe.2011.02.004.
    1. Carl MA, Ndao IM, Springman AC, Manning SD, Johnson JR, Johnston BD, et al. Sepsis from the gut: the enteric habitat of bacteria that cause late-onset neonatal bloodstream infections. Clin Infect Dis. 2014;58:1211–8. doi: 10.1093/cid/ciu084.
    1. Madan JC, Salari RC, Saxena D, Davidson L, O’Toole GA, Moore JH, et al. Gut microbial colonization in premature neonates predict neonatal sepsis. Arch Dis Child Fetal Neonatal Ed. 2012;97:F456–62.
    1. Meier PP, Bode L. Health, nutrition, and cost outcomes of human milk feedings for very low birthweight infants. Adv Nutr. 2013;4:670–1. doi: 10.3945/an.113.004457.
    1. Underwood MA. Human milk for the premature infant. Pediatr Clin North Am. 2013;60:189–207. doi: 10.1016/j.pcl.2012.09.008.
    1. Kiu B, Newburg DA. Human milk glycoproteins protect infants against human pathogens. Breastfeed Med. 2013;8:354–62. doi: 10.1089/bfm.2013.0016.
    1. Rodríguez NA, Miracle DJ, Meier PP. Sharing the science on human milk feedings with mothers of very low birth weight infants. JOGNN. 2005;34:109–19. doi: 10.1177/0884217504272807.
    1. Sisk PM, Dillard RG, Gruber KJ, O’Shea TM. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol. 2007;27:428–33. doi: 10.1038/sj.jp.7211758.
    1. Furman L, Taylor G, Minich N, Hack M. The effect of maternal milk on neonatal morbidity of very low birth weight infants. Arch Pediatr Adolesc Med. 2003;157:66–71. doi: 10.1001/archpedi.157.1.66.
    1. Schanler RJ, Shulman RJ, Lau C. Feeding strategies for premature infants; beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics. 1999;103:1150–7. doi: 10.1542/peds.103.6.1150.
    1. Lucas A, Cole TJ. Breast milk and neonatal necrotizing enterocolitis. Lancet. 1990;336:1519–23. doi: 10.1016/0140-6736(90)93304-8.
    1. Hylander MA, Strobino DM, Dhanireddy R. Human milk feedings and infection among very low birth weight infants. Pediatrics. 1998;102:E 38. doi: 10.1542/peds.102.3.e38.
    1. Meinzen-Derr J, Poindexter B, Wrage L, Morrow AL, Donovan EF. Role of human milk in extremely low birth weight infants’ risk of necrotizing enterocolitis or death. J Perinatol. 2009;29:57–62. doi: 10.1038/jp.2008.117.
    1. Schanler RJ. Evaluation of the evidence to support the current recommendations to meet the needs of premature infants: the role of human milk. Am J Clin Nutr. 2007;85:625S–8S.
    1. Patel AL, Johnson TJ, Engstrom JL, Fogg LF, Jegier BJ, Bigger HR, et al. Impact of early human milk on sepsis and health-care costs in very low birth weight infants. J Perinatol. 2013;33:1–6. doi: 10.1038/jp.2012.122.
    1. Rautava S, Walker WA. Academy of Breastfeeding Medicine Founder’s Lecture 2008: breastfeeding – an extrauterine link between mother and child. Breastfeed Med. 2009;4:3–10. doi: 10.1089/bfm.2009.0004.
    1. Meier PP, Engstrom JL, Patel AL, Jegier BJ, Bruns NE. Improving the use of human milk during and after the NICU stay. Clin Perinatol. 2010;37:217–45. doi: 10.1016/j.clp.2010.01.013.
    1. Garofalo R. Cytokines in human milk. (Review) J Pediatr. 2010;156:536–40. doi: 10.1016/j.jpeds.2009.11.019.
    1. Donovan SM, Wang M, Friedberg I, Schwartz SL, Chapkin RS. Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides. Adv Nutr. 2012;3:450S–5S. doi: 10.3945/an.112.001859.
    1. Newburg DS. Oligosaccharides in human milk and bacterial colonization. J Pediatr Gastroenterolo Nut. 2000;30:S8–S17. doi: 10.1097/00005176-200003002-00003.
    1. Boehm G, Stahl B. Oligosaccharides from milk. J Nutr. 2007;137:847S–9S.
    1. Coppa GV, Zampini L, Galeazzi T, Facinelli B, Ferrante L, Capretti R, et al. Human milk oligosaccharides inhibit the adhesion of Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae and Salmonella fyris. Pediatr Res. 2006;59:377–82. doi: 10.1203/01.pdr.0000200805.45593.17.
    1. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, et al. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr Res. 2004;56:536–40. doi: 10.1203/01.PDR.0000139411.35619.B4.
    1. Ledbetter DJ, Juul SE. Erythropoietin and the incidence of necrotizing enterocolitis in infants with very low birth weight. J Pediatr Surg. 2000;35:178–81. doi: 10.1016/S0022-3468(00)90006-X.
    1. Field CJ. The immunological components of human milk and their effect on immune development in infants. J Nutr. 2005;135:1–4.
    1. Walker A. Breastmilk as the gold standard for protective nutrients. J Pediatr. 2010;156:S3–7. doi: 10.1016/j.jpeds.2009.11.021.
    1. Newburg DS, Walker WA. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr Res. 2007;95:1075–81.
    1. Rodriguez NA, Caplan MS. Oropharyngeal administration of mother’s milk to prevent necrotizing enterocolitis in extremely low birth weight infants: theoretical perspectives. J Perinat Neonat Nurs. 2015;29:81–90. doi: 10.1097/JPN.0000000000000087.
    1. Cernada M, Serna E, Bauerl C, Collado MC, Pérez-Martínez G, Vento M. Genome-wide expression profiles in very low birth weight infants with neonatal sepsis. Pediatrics. 2014;133(5):e1203–11. doi: 10.1542/peds.2013-2552.
    1. Rahman MM, Kim WS, Ito T, Kumura H, Shimazaki K, et al. Growth promoting and cell binding ability of bovine lactoferrin to Bifidobacterium longum. Anaerobe. 2009;15:133–7. doi: 10.1016/j.anaerobe.2009.01.003.
    1. Shoji H, Oguchi S, Shinohara K, Shimizu T, Yamashiro Y. Effects of iron-saturated human lactoferrin on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells. Pediatr Res. 2007;61:89–92. doi: 10.1203/01.pdr.0000250198.22735.20.
    1. Wakabayashi H, Takakura N, Yamauchi K, Tamura Y. Modulation of immunity-related gene expression in small intestines of mice by oral administration of lactoferrin. Clin Vaccine Immunol. 2006;13:239–45. doi: 10.1128/CVI.13.2.239-245.2006.
    1. Actor JK, Hwang SA, Kruzel ML. Lactoferrin as a natural immune modulator. Curr Pharm Des. 2009;15:1956–73. doi: 10.2174/138161209788453202.
    1. Berlutti F, Schippa S, Morea C, Sarli S, Perfetto B, Donnarumma G, et al. Lactoferrin downregulates pro-inflammatory cytokines upexpressed in intestinal epithelial cells infected with invasive or noninvasive Escherichia coli strains. Biochem Cell Bio. 2006;84:351–7. doi: 10.1139/o06-039.
    1. Zuccotti GV, Vigano A, Borelli M, Saresella M, Giacomet V, Clerici M, et al. Modulation of innate and adaptive immunity by lactoferrin in human immunodeficiency virus (HIV)-infected antiretroviral therapy naïve children. Int J Antimicrob Agents. 2007;29:353–5. doi: 10.1016/j.ijantimicag.2006.11.017.
    1. Mathur NB, Dwarkadas AM, Sharma VK, Saha K, Jain K. Anti-infective factors in preterm colostrum. Acta Paediatr Scand. 1990;79:1039–44. doi: 10.1111/j.1651-2227.1990.tb11380.x.
    1. Grumach AS, Carmona RC, Lazarotti D, Ribeiro MA, Rozentraub RB, Racz ML, et al. Immunological factors in milk from Brazilian mothers delivering small-for-date term neonates. Acta Paediatr. 1993;82:284–90. doi: 10.1111/j.1651-2227.1993.tb12661.x.
    1. Goldman AS, Garza C, Nichols B, Johnson CA, Smith EO, Goldblum RM. Effects of prematurity on the immunologic system in human milk. J Pediatr. 1982;101:901–5. doi: 10.1016/S0022-3476(82)80007-3.
    1. Araujo ED, Goncalves AK, Cornetta M, Cunha H, Cardoso ML, Morais SS, et al. Evaluation of the secretory immunologlobulin A levels in the colostrum and milk of mothers of term and preterm infants. Braz J Infect Dis. 2005;9:357–62.
    1. Dvorak B, Fituch CC, Williams CS, Hurst NM, Schanler RJ. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr Res. 2003;54:15–9. doi: 10.1203/01.PDR.0000065729.74325.71.
    1. Davidson B, Meinzen-Derr JK, Wagner CL, Newburg DS, Morrow AL. Fucosylated oligosaccharides in human milk in relation to gestational age and stage of lactation. Adv Exp Med Biol. 2004;554:427–30. doi: 10.1007/978-1-4757-4242-8_56.
    1. Koenig A, de Albuquerque Diniz EM, Barbosa SF, Vaz FA. Immunologic factors in human milk: the effects of gestational age and pasteurization. J Hum Lact. 2005;21:439–43. doi: 10.1177/0890334405280652.
    1. Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin Rev Allergy Immunol. 2008;34:191–204. doi: 10.1007/s12016-007-8032-3.
    1. Hirai C, Ichiba H, Saito M, Shintaku H, Yamano T, Kusuda S. Trophic effect of multiple growth factors in amniotic fluid or human milk on cultured human fetal small intestinal cells. J Pediatr Gastroenterol Nutr. 2002;34:524–8. doi: 10.1097/00005176-200205000-00010.
    1. Ller HKM, Fink LN, Sangild PT, Fr Ki RH. Colostrum and amniotic fluid from different species exhibit similar immunomodulating effects in bacterium-stimulated dendritic cells. J Interferon Cytokine Res. 2011;31:813–23. doi: 10.1089/jir.2010.0070.
    1. Rodriquez N, Meier P, Groer M, Zeller J. Oropharyngeal administration of colostrum to extremely low birth weight infants: theoretical perspectives. J Perinatol. 2009;29:1–7. doi: 10.1038/jp.2008.130.
    1. Bocci V, von Bremen K, Corradeschi F, Luzzi E, Paulesu L. What is the role of cytokines in human colostrum? Journal of Biological Regulators & Homeostatic Agents. 1991;5:121–4.
    1. Bocci V. Absorption of cytokines via oropharyngeal-associated lymphoid tissues. Clin Pharmacokinet. 1991;21:411–17. doi: 10.2165/00003088-199121060-00002.
    1. Rodriguez NA, Meier PP, Groer M, Zeller J, Engstrom J, Fogg L. A pilot study to determine the safety and feasibility of oropharyngeal administration of own mother’s colostrum to extremely low birth weight infants. Adv Neonatal Care. 2010;10:206–12. doi: 10.1097/ANC.0b013e3181e94133.
    1. Rodriguez NA, Meier PP, Groer MW, Zeller JM, Engstrom JL, Fogg L, et al. Randomized clinical trial of the oropharyngeal administration of mother’s colostrum to extremely low birth weight infants in the first days of life. Neonatal Intensive Care J Perinatol Neonatol. 2011;24:31–5.
    1. Lee J, Kim HS, Jung YH, Choi KY, Shin SH, Kim EK, et al. Oropharyngeal colostrum administration in extremely premature infants: an RCT. Pediatrics. 2015;135:e357–366. doi: 10.1542/peds.2014-2004.
    1. Seigel JK, Smith B, Ashley P, Cotton M, Herbert C, King B, et al. Early administration of oropharyngeal colostrum to extremely low birthweight infants. Breastfeeding Med. 2013;8.
    1. Wilson S, Taylor C, Root K, Blackman A, Kaufman D. Oral care in the neonate: one step in a bundle to reduce Ventilator Associated Pneumonia (VAP) Boston, MA. E-PAS: Paper presented at: Pediatric Academic Societies (PAS) 2012, 28 April – 1 May; 2012. pp. 1519–349.
    1. Montgomery DP, Baer VL, Lambert DK, Christensen RD. Oropharyngeal administration of colostrum to very low birth weight infants: results of a feasibility trial. Neonatal Intensive Care J Perinatol Neonatol. 2010;23:27–9.
    1. Olsen J. Implementation of oropharyngeal administration of colostrum in the NICU. Washington, D.C: Paper presented at the Vermont Oxford Network Annual Meeting; 2011.
    1. McCallie KR, Lee HC, Mayer O, Cohen RS, Hintz SR, Rhine WD. Improved outcomes with a standardized feeding protocol for very low birth weight infants. J Perinatol. 2011;31:S61–7. doi: 10.1038/jp.2010.185.
    1. Steffen E, Vangvanichyakorn K, Sun S. Implementing a bundle of Potentially Better Practices (PBP) to reduce NEC rate in VLBW infants. Washington DC: Presented at the Vermont Oxford Network Annual Meeting; 2011.
    1. Caprio MC, Barr PA, Kim Y, Cruz H. Effects of establishing a feeding protocol to improve nutrition in premature neonates. Washington, D.C: Presented at the Pediatric Academic Societies (PAS) Annual Meeting; 2013. pp. 4–7.
    1. Thibeau S, Boudreaux C. Exploring the use of mother’s own milk as oral care for mechanically ventilated very low birth weight infants. Adv Neonatal Care. 2013;13:190–7. doi: 10.1097/ANC.0b013e318285f8e2.
    1. Gephart SM, Weller M. Colostrum as oral immune therapy to promote neonatal Health. Adv Neonatal Care. 2014;14:44–51. doi: 10.1097/ANC.0000000000000052.
    1. McFadden B. Proquest dissertations and theses, vol. 117. Denton, Texas: Texas Woman’s University; 2012. Oral colonization in the preterm neonate; effect of oral care.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4. doi: 10.1038/ismej.2012.8.
    1. Vento M, Moro M, Escrig R, Arruza L, Villar G, Izquierdo I, et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics. 2009;124:e439–49. doi: 10.1542/peds.2009-0434.
    1. Vento M, Teramo K. Evaluating the fetus at risk for cardiopulmonary compromise. Semin Fetal Neonatal Med. 2013;18:324–9. doi: 10.1016/j.siny.2013.08.003.
    1. Vento M. Oxygen supplementation in the neonatal period: changing the paradigm. Neonatology. 2014;105:323–31. doi: 10.1159/000360646.
    1. Kapadia VS, Chalak LF, Sparks JE, Allen JR, Savani RC, Wyckoff MH. Resuscitation of preterm neonates with limited versus high oxygen strategy. Pediatrics. 2013;132:e1488–96. doi: 10.1542/peds.2013-0978.
    1. Ledo A, Arduini A, Asensi MA, Sastre J, Escrig R, Brugada M, et al. Human milk enhances antioxidant defenses against hydroxyl radical aggression in preterm infants. Am J Clin Nutr. 2009;89:210–5. doi: 10.3945/ajcn.2008.26845.
    1. Kuligowski J, Torres-Cuevas I, Quintás G, Rook D, van Goudoever JB, Cubells E, et al. Assessment of oxidative damage to proteins and DNA in urine of newborn infants by a validated UPLC-MS/MS approach. PLoS One. 2014;9 doi: 10.1371/journal.pone.0093703.
    1. Kuligowski J, Escobar J, Quintás G, Lliso I, Torres-Cuevas I, Nuñez A, et al. Analysis of lipid peroxidation biomarkers in extremely low gestational age neonate urines by UPLC-MS/MS. Anal Bioanal Chem. 2014. doi:10.1007/s00216-014-7824-6.
    1. Goldblum RM, Schanler RJ, Garza C, Goldman AS. Human milk feedings enhances the urinary excretion of immunologic factors in low birth weight infants. Pediatr Res. 1989;25:184–8. doi: 10.1203/00006450-198902000-00021.
    1. Goldman AS, Garza C, Schanler RJ, Goldblum RM. Molecular forms of lactoferrin in stool and urine from infants fed human milk. Pediatr Res. 1990;27:252–5. doi: 10.1203/00006450-199003000-00009.
    1. Hutchens TW, Henry JF, Yip TT. Purification and characterization of intact lactoferrin found in the urine of human milk-fed preterm infants. Clin Chem. 1989;35:1928–33.
    1. Hutchens TW, Henry JF, Yip T. Origin of intact lactoferrin and its DNA-binding fragments found in the urine of human milk-fed preterm infants; evaluation by stable isotope enrichment. Pediatr Res. 1991;29:243–50. doi: 10.1203/00006450-199103000-00005.
    1. Knapp RD, Hutchens TW. Maternal lactoferrin in the urine of preterm infants. Evidence for retention of structure and function. Adv Exp Med Biol. 1994;357:177–81. doi: 10.1007/978-1-4615-2548-6_17.

Source: PubMed

3
S'abonner