Plasmablast Expansion Following the Tetravalent, Live-Attenuated Dengue Vaccine Butantan-DV in DENV-Naïve and DENV-Exposed Individuals in a Brazilian Cohort

Cássia G T Silveira, Diogo M Magnani, Priscilla R Costa, Vivian I Avelino-Silva, Michael J Ricciardi, Maria do Carmo S T Timenetsky, Raphaella Goulart, Carolina A Correia, Mariana P Marmorato, Lilian Ferrari, Zelinda B Nakagawa, Claudia Tomiyama, Helena Tomiyama, Jorge Kalil, Ricardo Palacios, Alexander R Precioso, David I Watkins, Esper G Kallás, Cássia G T Silveira, Diogo M Magnani, Priscilla R Costa, Vivian I Avelino-Silva, Michael J Ricciardi, Maria do Carmo S T Timenetsky, Raphaella Goulart, Carolina A Correia, Mariana P Marmorato, Lilian Ferrari, Zelinda B Nakagawa, Claudia Tomiyama, Helena Tomiyama, Jorge Kalil, Ricardo Palacios, Alexander R Precioso, David I Watkins, Esper G Kallás

Abstract

An effective vaccine against the dengue virus (DENV) should induce a balanced, long-lasting antibody (Ab) response against all four viral serotypes. The burst of plasmablasts in the peripheral blood after vaccination may reflect enriched vaccine-specific Ab secreting cells. Here we characterize the acute plasmablast responses from naïve and DENV-exposed individuals following immunization with the live attenuated tetravalent (LAT) Butantan DENV vaccine (Butantan-DV). The frequency of circulating plasmablasts was determined by flow cytometric analysis of fresh whole blood specimens collected from 40 participants enrolled in the Phase II Butantan-DV clinical trial (NCT01696422) before and after (days 6, 12, 15 and 22) vaccination. We observed a peak in the number of circulating plasmablast at day 15 after vaccination in both the DENV naïve and the DENV-exposed vaccinees. DENV-exposed vaccinees experienced a significantly higher plasmablast expansion. In the DENV-naïve vaccinees, plasmablasts persisted for approximately three weeks longer than among DENV-exposed volunteers. Our findings indicate that the Butantan-DV can induce plasmablast responses in both DENV-naïve and DENV-exposed individuals and demonstrate the influence of pre-existing DENV immunity on Butantan DV-induced B-cell responses.

Keywords: dengue; dengue infection; dengue vaccine; humoral response; plasmablast.

Conflict of interest statement

JK and RP are former employees of the Butantan Institute. AP is an employee of the Butantan Institute. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer (CP) declared a shared affiliation with the author (MT) to the handling editor at the time of review.

Copyright © 2022 Silveira, Magnani, Costa, Avelino-Silva, Ricciardi, Timenetsky, Goulart, Correia, Marmorato, Ferrari, Nakagawa, Tomiyama, Tomiyama, Kalil, Palacios, Precioso, Watkins and Kallás.

Figures

Figure 1
Figure 1
Study design. Naïve and DENV-pre-exposed volunteers received a single subcutaneous dose of the lyophilized vaccine consisting of 1,000 PFU of each attenuated virus or placebo (qualified Leibovitz L-15 medium only). Blood samples were collected pre-vaccination (baseline, day 0) and at days 3, 6, 9, 11-12, 15, 21-22, 28, 56 and 91 post-vaccination, and used for the assessment of vaccine induce-viremia, DENV neutralizing antibodies (nAbs) titers using plaque reduction test (PRNT), and plasmablast responses using flow cytometry.
Figure 2
Figure 2
Logarithm-transformed DENV neutralizing antibody (nAb) titers from naïve (white) (A) and DENV pre-exposed (gray) (B) volunteers at baseline and post-vaccination. Data was generated by 50% plaque-reduction neutralization titer assay (PRNT50). Circles and triangles represent median log titers for each DENV serotype in placebo and vaccinees volunteers, respectively. Horizontal lines span the 25th-75th percentiles (interquartile range). The values on the right of each time point column represents the p-values obtained after the analysis of placebo and vaccinees nAb titers using non-parametric Wilcoxon rank-sum test.
Figure 3
Figure 3
Representative flow cytometric analysis of circulating plasmablast in naïve (DENV (–)) and DENV-pre-exposed (DENV(+)) volunteers enrolled in the Phase II clinical trial evaluated before (baseline) and after vaccination (days 6, 11-12, 15, 21-22). All plots represent the frequency of CD27+ CD38+ cells gated on live CD3- CD14- CD19+ cells.
Figure 4
Figure 4
Plasmablast expansion (as the percentage of CD20- CD27+ CD38+ cells among the CD19+ population) after Butantan-DV vaccination. Results are presented as pooled total plasmablast cells analyzed in a Boolean analysis. (A, B) Frequency of plasmablast in fresh blood from DENV (–) (A) and DENV(+) (B) volunteers at baseline and days 6, 11-12, 15 and 21-22 post-immunization. D, days post-vaccination. P, placebo. V, vaccinee. Horizontal bars represent median and interquartile range. Statistical analysis was performed using a non-paired t test. (C) Difference in the frequency of plasmablast comparing the values obtained at baseline and at the peak of plasmablast expansion (D15 after Butantan-DV vaccination) in naïve [DENV (–)] and DENV pre-exposed [DENV(+)) vaccinees. DENV(+) volunteers were divided into individuals pre-exposed to 1 or 2 or more serotypes, according to PRNT50 results to all four DENV serotypes at baseline. Data were analyzed with the Mann-Whitney U test.

References

    1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. . The Global Distribution and Burden of Dengue. Nature (2013) 496:504–7. doi: 10.1038/NATURE12060
    1. (2020). Available at: .
    1. (2021), 1–17 p. Secretaria de Vigilância em Saúde, Saúde M da. Monitoramento dos casos de arboviroses pelo mosquito Aedes (dengue, chikungunya urbanas causados por vírus transmitidos e zika), semanas epidemiológicas 1 a 51, 2021.
    1. (2020), 1–13 p. Saúde S de V em, Saúde M da. Boletim epidemiológico. Monitoramento dos casos de Arboviroses urbanas transmitidas pelo Aedes (dengue, chikungunya e Zika), semanas epidemiológicas 1 a 50, 2020.
    1. (2022) 2022. Secretaria de Vigilância em Saúde M da S. Monitoramento dos casos de arboviroses até a semana epidemiológica 9 de.
    1. Fares RCG, Souza KPR, Añez G, Rios M. Epidemiological Scenario of Dengue in Brazil. BioMed Res Int (2015) 2015:1–13. doi: 10.1155/2015/321873
    1. Simmons CP, Farrar JJ, Chau N van V, Wills B, van Vinh Chau N, Wills B. Dengue. New Engl J Med (2012) 366:1423–32. doi: 10.1177/1461444810365020
    1. Green S, Rothman A. Immunopathological Mechanisms in Dengue and Dengue Hemorrhagic Fever. Curr Opin Infect Dis (2006) 19:429–36. doi: 10.1097/01.QCO.0000244047.31135.FA
    1. Guzman MG, Vazquez S. The Complexity of Antibody-Dependent Enhancement of Dengue Virus Infection. Viruses (2010) 2:2649. doi: 10.3390/V2122649
    1. Halstead SB, Mahalingam S, Marovich MA, Ubol S, Mosser DM. Intrinsic Antibody-Dependent Enhancement of Microbial Infection in Macrophages: Disease Regulation by Immune Complexes. Lancet Infect Dis (2010) 10:712. doi: 10.1016/S1473-3099(10)70166-3
    1. Rothman AL. Dengue: Defining Protective Versus Pathologic Immunity. J Clin Invest (2004) 113:946–51. doi: 10.1172/JCI21512
    1. Wrammert J, Onlamoon N, Akondy RS, Perng GC, Polsrila K, Chandele A, et al. . Rapid and Massive Virus-Specific Plasmablast Responses During Acute Dengue Virus Infection in Humans. J Virol (2012) 86:2911. doi: 10.1128/JVI.06075-11
    1. Zompi S, Montoya M, Pohl MO, Balmaseda A, Harris E. Dominant Cross-Reactive B Cell Response During Secondary Acute Dengue Virus Infection in Humans. PloS Negl Trop Dis (2012) 6:e1568. doi: 10.1371/JOURNAL.PNTD.0001568
    1. Katzelnick LC, Montoya M, Gresh L, Balmaseda A, Harris E. Neutralizing Antibody Titers Against Dengue Virus Correlate With Protection From Symptomatic Infection in a Longitudinal Cohort. Proc Natl Acad Sci U.S.A. (2016) 113:728–33. doi: 10.1073/PNAS.1522136113
    1. Murphy BR, Whitehead SS. Immune Response to Dengue Virus and Prospects for a Vaccine. Annu Rev Immunol (2011) 29:587–619. doi: 10.1146/ANNUREV-IMMUNOL-031210-101315
    1. Carter MJ, Mitchell RM, Sauteur PMM, Kelly DF, Trück J. The Antibody-Secreting Cell Response to Infection: Kinetics and Clinical Applications. Front Immunol (2017) 8:630. doi: 10.3389/FIMMU.2017.00630
    1. Halliley JL, Kyu S, Kobie JJ, Walsh EE, Falsey AR, Randall TD, et al. . Peak Frequencies of Circulating Human Influenza-Specific Antibody Secreting Cells Correlate With Serum Antibody Response After Immunization. Vaccine (2010) 28:3582–7. doi: 10.1016/J.VACCINE.2010.02.088
    1. Lee VJ, Tay JK, Chen MIC, Phoon MC, Xie ML, Wu Y, et al. . Inactivated Trivalent Seasonal Influenza Vaccine Induces Limited Cross-Reactive Neutralizing Antibody Responses Against 2009 Pandemic and 1934 PR8 H1N1 Strains. Vaccine (2010) 28:6852–7. doi: 10.1016/J.VACCINE.2010.08.031
    1. Balakrishnan T, Bela-Ong DB, Toh YX, Flamand M, Devi S, Koh MB, et al. . Dengue Virus Activates Polyreactive, Natural IgG B Cells After Primary and Secondary Infection. PloS One (2011) 6:e29430. doi: 10.1371/JOURNAL.PONE.0029430
    1. Chau TNB, Quyen NTH, Tran TT, Nguyen MT, Dang MH, Dung NTP, et al. . Dengue in Vietnamese Infants—Results of Infection-Enhancement Assays Correlate With Age-Related Disease Epidemiology, and Cellular Immune Responses Correlate With Disease Severity. J Infect Dis (2008) 198:516–24. doi: 10.1086/590117
    1. Sharma A, Zhang X, Dejnirattisai W, Dai X, Gong D, Wongwiwat W, et al. . The Epitope Arrangement on Flavivirus Particles Contributes to Mab C10’s Extraordinary Neutralization Breadth Across Zika and Dengue Viruses. Cell (2021) 184:6052–6066.e18. doi: 10.1016/j.cell.2021.11.010
    1. Yoksan S, Tubthong K, Kanitwithayanun W, Jirakanjanakit N. Laboratory Assays and Field Dengue Vaccine Evaluation at Ratchaburi Province, Thailand: A Preliminary Result. J Clin Virol (2009) 46:S13–5. doi: 10.1016/S1386-6532(09)70289-6
    1. Tu HA, Nivarthi UK, Graham NR, Eisenhauer P, Delacruz MJ, Pierce KK, et al. . Stimulation of B Cell Immunity in Flavivirus-Naive Individuals by the Tetravalent Live Attenuated Dengue Vaccine Tv003. Cell Rep Med (2020) 1:100155. doi: 10.1016/j.xcrm.2020.100155
    1. Kallas EG, Precioso AR, Palacios R, Thomé B, Braga PE, Vanni T, et al. . Safety and Immunogenicity of the Tetravalent, Live-Attenuated Dengue Vaccine Butantan-DV in Adults in Brazil: A Two-Step, Double-Blind, Randomised Placebo-Controlled Phase 2 Trial. Lancet Infect Dis (2020) 20:839–50. doi: 10.1016/S1473-3099(20)30023-2
    1. Durbin AP, Kirkpatrick BD, Pierce KK, Carmolli MP, Tibery CM, Grier PL, et al. . A 12-Month-Interval Dosing Study in Adults Indicates That a Single Dose of the National Institute of Allergy and Infectious Diseases Tetravalent Dengue Vaccine Induces a Robust Neutralizing Antibody Response. J Infect Dis (2016) 214:832–5. doi: 10.1093/infdis/jiw067
    1. Durbin AP, Schmidt A, Elwood D, Wanionek KA, Lovchik J, Thumar B, et al. . Heterotypic Dengue Infection With Live Attenuated Monotypic Dengue Virus Vaccines: Implications for Vaccination of Populations in Areas Where Dengue Is Endemic. J Infect Dis (2011) 203:327. doi: 10.1093/INFDIS/JIQ059
    1. Johnson BW, Russell BJ, Lanciotti RS. Serotype-Specific Detection of Dengue Viruses in a Fourplex Real-Time Reverse Transcriptase PCR Assay. J Clin Microbiol (2005) 43:4977–83. doi: 10.1128/JCM.43.10.4977-4983.2005
    1. Roehrig JT, Hombach J, Barrett ADT. Guidelines for Plaque-Reduction Neutralization Testing of Human Antibodies to Dengue Viruses. Viral Immunol (2008) 21:123–32. doi: 10.1089/VIM.2008.0007
    1. Venturi G, Mel R, Marchi A, Mancuso S, Russino F, Da PG, et al. . Humoral Immunity and Correlation Between ELISA, Hemagglutination Inhibition, and Neutralization Tests After Vaccination Against Tick-Borne Encephalitis Virus in Children. J Virol Methods (2006) 134:136–9. doi: 10.1016/J.JVIROMET.2005.12.010
    1. Radbruch A, Muehlinghaus G, Luger EO, Inamine A, Smith KGC, Dörner T, et al. . Competence and Competition: The Challenge of Becoming a Long-Lived Plasma Cell. Nat Rev Immunol (2006) 6:741–50. doi: 10.1038/nri1886
    1. Amanna IJ, Carlson NE, Slifka MK. Duration of Humoral Immunity to Common Viral and Vaccine Antigens. New Engl J Med (2007) 357:1903–15. doi: 10.1056/NEJMOA066092/SUPPL_FILE/NEJM_AMANNA_1903SA1.PDF
    1. Kirkpatrick BD, Durbin AP, Pierce KK, Carmolli MP, Tibery CM, Grier PL, et al. . Robust and Balanced Immune Responses to All 4 Dengue Virus Serotypes Following Administration of a Single Dose of a Live Attenuated Tetravalent Dengue Vaccine to Healthy, Flavivirus-Naive Adults. J Infect Dis (2015) 212:702–10. doi: 10.1093/INFDIS/JIV082
    1. Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The Generation of Antibody-Secreting Plasma Cells. Nat Rev Immunol (2015) 15:160–71. doi: 10.1038/nri3795
    1. Nakaya HI, Wrammert J, Lee EK, Racioppi L, Marie-Kunze S, Haining WN, et al. . Systems Biology of Vaccination for Seasonal Influenza in Humans. Nat Immunol 2011 12:8 (2011) 12:786–95. doi: 10.1038/ni.2067
    1. Furman D, Davis MM. New Approaches to Understanding the Immune Response to Vaccination and Infection. Vaccine (2015) 33:5271–81. doi: 10.1016/J.VACCINE.2015.06.117
    1. Jahnmatz M, Amu S, Ljungman M, Wehlin L, Chiodi F, Mielcarek N, et al. . B-Cell Responses After Intranasal Vaccination With the Novel Attenuated Bordetella Pertussis Vaccine Strain BPZE1 in a Randomized Phase I Clinical Trial. Vaccine (2014) 32:3350–6. doi: 10.1016/J.VACCINE.2014.04.048
    1. Odendahl M, Mei H, Hoyer BF, Jacobi AM, Hansen A, Muehlinghaus G, et al. . Generation of Migratory Antigen-Specific Plasma Blasts and Mobilization of Resident Plasma Cells in a Secondary Immune Response. Blood (2005) 105:1614–21. doi: 10.1182/BLOOD-2004-07-2507
    1. Doria-Rose NA, Klein RM, Manion MM, O’Dell S, Phogat A, Chakrabarti B, et al. . Frequency and Phenotype of Human Immunodeficiency Virus Envelope-Specific B Cells From Patients With Broadly Cross-Neutralizing Antibodies. J Virol (2009) 83:188–99. doi: 10.1128/JVI.01583-08
    1. Mathew A, West K, Kalayanarooj S, Gibbons RV, Srikiatkhachorn A, Green S, et al. . B-Cell Responses During Primary and Secondary Dengue Virus Infections in Humans. J Infect Dis (2011) 204:1514–22. doi: 10.1093/INFDIS/JIR607
    1. Garcia-Bates TM, Cordeiro MT, Nascimento EJM, Smith AP, de Melo KMS, McBurney SP, et al. . Association Between Magnitude of the Virus-Specific Plasmablast Response and Disease Severity in Dengue Patients. J Immunol (2013) 190:80–7. doi: 10.4049/JIMMUNOL.1103350
    1. Lei C, Yu Q, Wang H, Liu JJ, Chen S, Zhao Z, et al. . Responses of CD27+CD38+ Plasmablasts, and CD24hiCD27hi and CD24hiCD38hi Regulatory B Cells During Primary Dengue Virus 2 Infection. J Clin Lab Anal (2021) 35:1–9. doi: 10.1002/jcla.24035
    1. Ellebedy AH, Jackson KJL, Kissick HT, Nakaya HI, Davis CW, Roskin KM, et al. . Defining Antigen-Specific Plasmablast and Memory B Cell Subsets in Human Blood After Viral Infection or Vaccination. Nat Immunol (2016) 17:10:1226–34. doi: 10.1038/ni.3533
    1. Ricciardi MJ, Magnani DM, Grifoni A, Kwon YC, Gutman MJ, Grubaugh ND, et al. . Ontogeny of the B- and T-Cell Response in a Primary Zika Virus Infection of a Dengue-Naïve Individual During the 2016 Outbreak in Miami, Fl. PloS Negl Trop Dis (2017) 11:1–23. doi: 10.1371/journal.pntd.0006000
    1. García M, Iglesias A, Landoni VI, Bellomo C, Bruno A, Córdoba MT, et al. . Massive Plasmablast Response Elicited in the Acute Phase of Hantavirus Pulmonary Syndrome. Immunology (2017) 151:122–35. doi: 10.1111/IMM.12713
    1. Priyamvada L, Cho A, Onlamoon N, Zheng N-Y, Huang M, Kovalenkov Y, et al. . B Cell Responses During Secondary Dengue Virus Infection Are Dominated by Highly Cross-Reactive, Memory-Derived Plasmablasts. J Virol (2016) 90:5574–85. doi: 10.1128/JVI.03203-15.Editor
    1. McElroy AK, Akondy RS, Davis CW, Ellebedy AH, Mehta AK, Kraft CS, et al. . Human Ebola Virus Infection Results in Substantial Immune Activation. Proc Natl Acad Sci U.S.A. (2015) 112:4719–24. doi: 10.1073/PNAS.1502619112
    1. Magnani DM, Silveira CGT, Ricciardi MJ, Gonzalez-Nieto L, Pedreño-Lopez N, Bailey VK, et al. . Potent Plasmablast-Derived Antibodies Elicited by the National Institutes of Health Dengue Vaccine. J Virol (2017) 91:1–12. doi: 10.1128/jvi.00867-17
    1. Xu M, Hadinoto V, Appanna R, Joensson K, Toh YX, Balakrishnan T, et al. . Plasmablasts Generated During Repeated Dengue Infection are Virus Glycoprotein-Specific and Bind to Multiple Virus Serotypes. J Immunol (2012) 189:5877–85. doi: 10.4049/JIMMUNOL.1201688
    1. Wec AZ, Haslwanter D, Abdiche YN, Shehata L, Pedreño-Lopez N, Moyer CL, et al. . Longitudinal Dynamics of the Human B Cell Response to the Yellow Fever 17d Vaccine. Proc Natl Acad Sci U.S.A. (2020) 117:6675–85. doi: 10.1073/pnas.1921388117
    1. Sandberg JT, Ols S, Löfling M, Varnaitė R, Lindgren G, Nilsson O, et al. . Activation and Kinetics of Circulating T Follicular Helper Cells, Specific Plasmablast Response, and Development of Neutralizing Antibodies Following Yellow Fever Virus Vaccination. J Immunol (2021) 207:1033–43. doi: 10.4049/jimmunol.2001381
    1. Katzelnick LC, Harris E, Baric R, Coller BA, Coloma J, Crowe JE, et al. . Immune Correlates of Protection for Dengue: State of the Art and Research Agenda. Vaccine (2017) 35:4659–69. doi: 10.1016/J.VACCINE.2017.07.045
    1. Shukla R, Ramasamy V, Shanmugam RK, Ahuja R, Khanna N. Antibody-Dependent Enhancement: A Challenge for Developing a Safe Dengue Vaccine. Front Cell Infect Microbiol (2020) 10:572681. doi: 10.3389/FCIMB.2020.572681
    1. Thomas SJ, Anderson KB, Vaughn DW, Putnak R, Nisalak A, Libraty DH, et al. . Dengue Plaque Reduction Neutralization Test (PRNT) in Primary and Secondary Dengue Virus Infections: How Alterations in Assay Conditions Impact Performance. Am J Trop Med Hyg (2010) 81:825–33. doi: 10.4269/ajtmh.2009.08-0625.Dengue
    1. Capeding RZ, Luna IA, Bomasang E, Lupisan S, Lang J, Forrat R, et al. . Live-Attenuated, Tetravalent Dengue Vaccine in Children, Adolescents and Adults in a Dengue Endemic Country: Randomized Controlled Phase I Trial in the Philippines. Vaccine (2011) 29:3863–72. doi: 10.1016/J.VACCINE.2011.03.057
    1. Shlomchik MJ, Weisel F. Germinal Center Selection and the Development of Memory B and Plasma Cells. Immunol Rev (2012) 247:52–63. doi: 10.1111/J.1600-065X.2012.01124

Source: PubMed

3
S'abonner