Neuroanatomical correlates of childhood apraxia of speech: A connectomic approach

Simona Fiori, Andrea Guzzetta, Jhimli Mitra, Kerstin Pannek, Rosa Pasquariello, Paola Cipriani, Michela Tosetti, Giovanni Cioni, Stephen E Rose, Anna Chilosi, Simona Fiori, Andrea Guzzetta, Jhimli Mitra, Kerstin Pannek, Rosa Pasquariello, Paola Cipriani, Michela Tosetti, Giovanni Cioni, Stephen E Rose, Anna Chilosi

Abstract

Childhood apraxia of speech (CAS) is a paediatric speech sound disorder in which precision and consistency of speech movements are impaired. Most children with idiopathic CAS have normal structural brain MRI. We hypothesize that children with CAS have altered structural connectivity in speech/language networks compared to controls and that these altered connections are related to functional speech/language measures. Whole brain probabilistic tractography, using constrained spherical deconvolution, was performed for connectome generation in 17 children with CAS and 10 age-matched controls. Fractional anisotropy (FA) was used as a measure of connectivity and the connections with altered FA between CAS and controls were identified. Further, the relationship between altered FA and speech/language scores was determined. Three intra-hemispheric/interhemispheric subnetworks showed reduction of FA in CAS compared to controls, including left inferior (opercular part) and superior (dorsolateral, medial and orbital part) frontal gyrus, left superior and middle temporal gyrus and left post-central gyrus (subnetwork 1); right supplementary motor area, left middle and inferior (orbital part) frontal gyrus, left precuneus and cuneus, right superior occipital gyrus and right cerebellum (subnetwork 2); right angular gyrus, right superior temporal gyrus and right inferior occipital gyrus (subnetwork 3). Reduced FA of some connections correlated with diadochokinesis, oromotor skills, expressive grammar and poor lexical production in CAS. These findings provide evidence of structural connectivity anomalies in children with CAS across specific brain regions involved in speech/language function. We propose altered connectivity as a possible epiphenomenon of complex pathogenic mechanisms in CAS which need further investigation.

Keywords: Childhood apraxia of speech; Connectivity; Diadochokinesis; Diffusion magnetic resonance; Fractional anisotropy.

Figures

Fig. 1
Fig. 1
Subnetworks with reduced fractional anisotropy (FA) in children with CAS compared to controls represented on brain renderings. Spheres correspond to significant nodes in the analysis. Sphere size is proportional to the number of altered connections originating from that node. The top panel represents subnetwork 1, the middle panel represents subnetwork 2, and the bottom panel represents subnetwork 3. All subnetworks from the left to the right are represented on axial, coronal and sagittal planes, respectively. Sagittal plane is viewed from the left.
Fig. 2
Fig. 2
Subnetworks that were significantly different between CAS and controls overlaid on a single image, shown on axial, coronal and sagittal planes (sagittal plane shows view from the left). Thin black lines represent edges (connections) whose average FA value does not correlate with any clinical measure. Brown edges represents: a) the connection between the opercular part of the left inferior frontal gyrus and the left middle temporal gyrus (subnetwork 1), whose average FA value correlates with low diadochokinesis rate (p = 0.01, R = 0.57), poor expressive grammar (p = 0.02, R = 0.53) and poor lexical production (p = 0.003, R = 0.67); b) the connection between the medial part of superior frontal gyrus and middle temporal gyrus (subnetwork 1), whose average FA value correlates with oromotor skills (p = 0.02, R = 0.56); c) the connection between the right superior occipital gyrus and left precuneus (subnetwork 2) whose average FA value correlates with low diadochokinesis rate (p = 0.01, R = 0.57).

References

    1. Ackermann H., Riecker A. The contribution(s) of the insula to speech production: a review of the clinical and functional imaging literature. Brain Struct. Funct. 2010;214(5–6):419–433.
    1. Alexander-Bloch A., Raznahan A., Bullmore E., Giedd J. The convergence of maturational change and structural covariance in human cortical networks. J. Neurosci. 2013;13(33(7)):2889–2899.
    1. American Speech-Language Hearing Association . 2007. Technical Report on Childhood Apraxia of Speech.
    1. Ashtari M., Lencz T., Zuffante P., Bilder R., Clarke T., Diamond A., Kane J., Szeszko P. Left middle temporal gyrus activation during a phonemic discrimination task. Neuroreport. 2004;1(15(3)):389–393.
    1. Bearzotti F., Fabbro F. Il test per la valutazione delle prassie orofacciali nel bambino. Giornale di Neuropsichatria dell’Età Evolutiva. 2003;23:406–417.
    1. Bello A., Caselli M.C., Pettenati P., Stefanini S. Giunti OS; Firenze: 2010. PinG parole in gioco.
    1. Belton E., Salmond C.H., Watkins K.E., Vargha-Khadem F., Gadian D.G. Bilateral brain abnormalities associated with dominantly inherited verbal and orofacial dyspraxia. Hum. Brain Mapp. 2003 Mar;18(3):194–200.
    1. Bender R., Lange S. Adjusting for multiple testing-when and how? J. Clin. Epidemiol. 2001;54(4):343–349.
    1. Binder J.R., Desai R.H., Graves W.W., Conant L.L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex. 2009;19(12):2767–2796.
    1. Brizzolara D. 1989. Test di vocabolario figurato. Technical Report of the Research Project 500.4/62.1/1134 Supported by a Grant From the Italian Department of Health to IRCCS Stella Maris.
    1. Catani M., Jones D.K., Ffytche D.H. Perisylvian language networks of the human brain. Ann. Neurol. 2005;57(1):8–16.
    1. Cavanna A.E., Trimble M.R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129(Pt 3):564–583.
    1. Chilosi A.M., Brizzolara D., Lami L., Pizzoli C., Gasperini F., Pecini C., Cipriani P., Zoccolotti P. Reading and spelling disabilities in children with and without a history of early language delay: a neuropsychological and linguistic study. Child Neuropsychol. 2009;15(6):582–604.
    1. Chilosi A.M., Comparini A., Scusa M.F., Orazini L., Forli F., Cipriani P., Berrettini S. A longitudinal study of lexical and grammar development in deaf Italian children provided with early cochlear implantation. Ear Hear. 2013;34(3):e28–e37.
    1. Chilosi A.M., Lorenzini I., Fiori S., Graziosi V., Rossi G., Pasquariello R., Cipriani P., Cioni G. Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children. Brain Lang. 2015;150:177–185. 2015 Nov.
    1. Cipriani P., Chilosi A.M., Bottari P. Unipress; Padova: 1993. L'acquisizione della morfo-sintassi in italiano-Fasi e processi.
    1. Dronkers N.F. A new brain region for coordinating speech articulation. Nature. 1996;14(384(6605)):159–161.
    1. Dunn L.M., Dunn L.M. third ed. American Guidance Service Inc., Circle Pines, MN. Italian standardization Omega Edition; 1997. Peabody Picture Vocabulary Test- PPVT.
    1. Friston K. Ten ironic rules for non-statistical reviewers. NeuroImage. 2012;16(61(4)):1300–1310.
    1. Grande M., Meffert E., Schoenberger E., Jung S., Frauenrath T., Huber W., Hussmann K., Moormann M., Heim S. From a concept to a word in a syntactically complete sentence: an fMRI study on spontaneous language production in an overt picture description task. NeuroImage. 2012;2(61(3)):702–714.
    1. Guenther F.H. Neural Modeling of Speech Production; Proceedings of the 4th International Nijmegen Speech Motor Conference; 2001.
    1. Guenther F.H., Hickok G. Role of the auditory system in speech production. Handb. Clin. Neurol. 2015;129:161–175.
    1. Hagmann P., Thiran J.P., Meuli R. EPFL; Lausanne: 2005. From Diffusion MRI to Brain Connectomics.
    1. Hillis A.E., Work M., Barker P.B., Jacobs M.A., Breese E.L., Maurer K. Re-examining the brain regions crucial for orchestrating speech articulation. Brain. 2004;127(Pt 7):1479–1487.
    1. Jones D.K., Knösche T.R., Turner R. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage. 2013;73:239–254.
    1. Jordan L.C., Hillis A.E. Disorders of speech and language: aphasia, apraxia and dysarthria. Curr. Opin. Neurol. 2006;19(6):580–585.
    1. Kadis D.S., Goshulak D., Namasivayam A., Pukonen M., Kroll R., De Nil L.F., Pang E.W., Lerch J.P. Cortical thickness in children receiving intensive therapy for idiopathic apraxia of speech. Brain Topogr. 2014;27(2):240–247.
    1. Landis J., Koch G. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–174.
    1. Lerch J.P., Worsley K., Shaw W.P., Greenstein D.K., Lenroot R.K., Giedd J., Evans A.C. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. NeuroImage. 2006;1(31(3)):993–1003.
    1. Lewis B.A., Freebairn L.A., Hansen A., Gerry Taylor H., Iyengar S., Shriberg L.D. Family pedigrees of children with suspected childhood apraxia of speech. J. Commun. Disord. 2004;37(2):157–175. Mar–Apr.
    1. Liégeois F.J., Morgan A.T. Neural bases of childhood speech disorders: lateralization and plasticity for speech functions during development. Neurosci. Biobehav. Rev. 2012;36(1):439–458.
    1. Liégeois F., Mayes A., Morgan A. Neural correlates of developmental speech and language disorders: evidence from neuroimaging. Curr. Dev. Disord. Rep. 2014;7(1):215–227.
    1. Maassen B. Issues contrasting adult acquired versus developmental apraxia of speech. Semin. Speech Lang. 2002;23(4):257–266.
    1. McNeill B.C., Gillon G.T., Dodd B. Phonological awareness and early reading development in childhood apraxia of speech (CAS) Int. J. Lang. Commun. Disord. 2009;44(2):175–192. Mar-Apr.
    1. Mandelli M.L., Caverzasi E., Binney R.J., Henry M.L., Lobach I., Block N., Amirbekian B., Dronkers N., Miller B.L., Henry R.G., Gorno-Tempini M.L. Frontal white matter tracts sustaining speech production in primary progressive aphasia. J. Neurosci. 2014;16(34(29)):9754–9767.
    1. Modat M., Ridgway G.R., Taylor Z.A., Lehmann M., Barnes J., Hawkes D.J., Fox N.C., Ourselin S. Fast free-form deformation using graphics processing units. Comput. Methods Prog. Biomed. 2010;98:278–284.
    1. Murray E., McCabe P., Heard R., Ballard K.J. Differential diagnosis of children with suspected childhood apraxia of speech. J. Speech Lang. Hear. Res. 2015;1(58(1)):43–60.
    1. Nachev P., Kennard C., Husain M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 2008;9(11):856–869.
    1. Nagao M., Takeda K., Komori T., Isozaki E., Hirai S. Apraxia of speech associated with an infarct in the precentral gyrus of the insula. Neuroradiology. 1999;41(5):356–357.
    1. Ogar J., Slama H., Dronkers N., Amici S., Gorno-Tempini M.L. Apraxia of speech: an overview. Neurocase. 2005;1(6):427–432.
    1. Ourselin S., Stefanescu R., Pennec X. Medical Image Computing and Computer-Assisted Intervention (MICCAI). volume 2489 of Lecture Notes in Computer Science. 2002. Robust registration of multi-modal images: towards real-time clinical applications; pp. 140–147.
    1. Ozanne A.E. Childhood apraxia of speech. In: Dodd B., editor. Differential Diagnosis and Treatment of Children with Speech Disorders. second ed. Whurr Pub. Ltd; London: 2005. pp. 71–82.
    1. Pallier C., Devauchelle A.D., Dehaene S. Cortical representation of the constituent structure of sentences. Proc. Natl. Acad. Sci. U. S. A. 2011;8(108(6)):2522–2527.
    1. Pannek K., Boyd R.N., Fiori S., Guzzetta A., Rose S.E. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions. Neuroimage Clin. 2014;4(5):84–92.
    1. Preston J.L., Molfese P.J., Mencl W.E., Frost S.J., Hoeft F., Fulbright R.K., Landi N., Grigorenko E.L., Seki A., Felsenfeld S., Pugh K.R. Structural brain differences in school-age children with residual speech sound errors. Brain Lang. 2014 Jan;128(1):25–33.
    1. Price A.R., Bonner M.F., Peelle J.E., Grossman M. Converging evidence for the neuroanatomic basis of combinatorial semantics in the angular gyrus. J. Neurosci. 2015;18(35(7)):3276–3284.
    1. R Development CoreTeam . R Foundation Statistical Computing; 2008. R: A Language and Environment for Statistical Computing.
    1. Riecker A., Mathiak K., Wildgruber D., Erb M., Hertrich I., Grodd W., Ackermann H. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology. 2005;2(64(4)):700–706.
    1. Schmahmann J.D., Smith E.E., Eichler F.S., Filley C.M. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N. Y. Acad. Sci. 2008;1142:266–309.
    1. Shriberg L.D., Potter N.L., Strand E.A. Prevalence and phenotype of childhood apraxia of speech in youth with galactosemia. J. Speech Lang. Hear Res. 2011;54(2):487–519.
    1. Takahashi S1., Yonezawa H., Takahashi J., Kudo M., Inoue T., Tohgi H. Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci. Lett. 2002;25(332(1)):45–48.
    1. Terband H., Maassen B. Speech motor development in childhood apraxia of speech: generating testable hypotheses by neurocomputational modeling. Folia Phoniatr. Logop. 2010;62(3):134–142.
    1. Thoonen G., Maassen B., Gabreëls F., Schreuder R., de Swart B. Towards a standardised assessment procedure for developmental apraxia of speech. Eur. J. Disord. Commun. 1997;32(1):37–60.
    1. Tournier J.D., Yeh C.H., Calamante F., Cho K.H., Connelly A., Lin C.P. Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. NeuroImage. 2008;15(42(2)):617–625.
    1. Tkach J.A., Chen X., Freebairn L.A., Schmithorst V.J., Holland S.K., Lewis B.A. Neural correlates of phonological processing in speech sound disorder: a functional magnetic resonance imaging study. Brain Lang. 2011;119(1):42–49.
    1. Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., Mazoyer B., Joliot M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–289.
    1. Velleman S.L. Lexical and phonological development in children with childhood apraxia of speech. A commentary on Stoel-Gammon's ‘relationships between lexical and phonological development in young children’. Journal of Child Language. 2011;38(1):82–86.
    1. Vicari S., Marotta L., Luci A. Trento; Ed Erickson: 2007. Test TFL - Test Fono Lessicale Valutazione delle abilità lessicali in età prescolare.
    1. Zalesky A., Fornito A., Bullmore E.T. Network-based statistic: identifying differences in brain networks. NeuroImage. 2010;53(4):1197–1207.

Source: PubMed

3
S'abonner