Impact of a toothpaste with microcrystalline hydroxyapatite on the occurrence of early childhood caries: a 1-year randomized clinical trial

Elzbieta Paszynska, Malgorzata Pawinska, Maria Gawriolek, Inga Kaminska, Justyna Otulakowska-Skrzynska, Grazyna Marczuk-Kolada, Szymon Rzatowski, Katarzyna Sokolowska, Aneta Olszewska, Ulrich Schlagenhauf, Theodor W May, Bennett T Amaechi, Elzbieta Luczaj-Cepowicz, Elzbieta Paszynska, Malgorzata Pawinska, Maria Gawriolek, Inga Kaminska, Justyna Otulakowska-Skrzynska, Grazyna Marczuk-Kolada, Szymon Rzatowski, Katarzyna Sokolowska, Aneta Olszewska, Ulrich Schlagenhauf, Theodor W May, Bennett T Amaechi, Elzbieta Luczaj-Cepowicz

Abstract

The aim of this trial was to determine whether a toothpaste with microcrystalline hydroxyapatite is not inferior to a fluoride toothpaste in prevention of caries in children. This double-blinded randomized control trial compared two toothpastes regarding the occurrence of caries lesions using International Caries Detection and Assessment System (ICDAS) ≥ code 1 on the primary dentition within 336 days. The test group used a fluoride-free hydroxyapatite toothpaste three times daily while control group used a toothpaste with fluoride. 207 children were included in the intention-to-treat analysis; 177 of them finished the study per protocol. An increase in caries ICDAS ≥ code 1 per tooth was observed in 72.7% of the hydroxyapatite-group (n = 88), compared with 74.2% of the fluoride-group (n = 89). The exact one-sided upper 95% confidence limit for the difference in proportion of participants with ICDAS increase ≥ 1 (-1.4%) was 9.8%, which is below the non-inferiority margin of 20% demonstrating non-inferiority of hydroxyapatite compared to the fluoride control toothpaste. This RCT showed for the first time, that in children, the impact of the daily use of a toothpaste with microcrystalline hydroxyapatite on enamel caries progression in the primary dentition is not inferior to a fluoride control toothpaste (Clinical Trials NCT03553966).

Conflict of interest statement

The authors declare no competing interest.

Figures

Figure 1
Figure 1
Patient flow chart.
Figure 2
Figure 2
Increase in ICDAS ≥ ∆1 in the fluoride, and HAP-group. In both groups, the proportion of children who developed at least on one tooth a caries lesion of ICDAS ≥ ∆1 is not significantly different (more details are shown in Table 2).
Figure 3
Figure 3
Increase in ICDAS ≥ ∆2 in the fluoride, and HAP-group. In both groups, the proportion of children who developed at least on one tooth a caries lesion of ICDAS ≥ ∆2 is not significantly different (more details are shown in Table 4).
Figure 4
Figure 4
PCR-values from visit 2 to visit 6. A represents the HAP-group, while B shows the fluoride-group. In both groups the PCR-values decreased significantly (Friedman-test, p 

Figure 5

GI from visit 2 to…

Figure 5

GI from visit 2 to visit 6. A represents the HAP-group, while B…

Figure 5
GI from visit 2 to visit 6. A represents the HAP-group, while B shows the fluoride-group. In both groups the GI decreased significantly. There was no difference between the HAP and the fluoride-group.
Figure 5
Figure 5
GI from visit 2 to visit 6. A represents the HAP-group, while B shows the fluoride-group. In both groups the GI decreased significantly. There was no difference between the HAP and the fluoride-group.

References

    1. Tinanoff N, et al. Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: global perspective. Int. J. Paediat. Dent. 2019;29:238–248. doi: 10.1111/ipd.12484.
    1. Kassebaum NJ, et al. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: a systematic analysis for the global burden of diseases, injuries, and risk factors. J. Dent. Res. 2017;96:380–387. doi: 10.1177/0022034517693566.
    1. Pitts N, et al. Early childhood caries: IAPD Bangkok declaration. Int. J. Paediat. Dent. 2019;29:384–386. doi: 10.1111/ipd.12490.
    1. Colak H, Dülgergil CT, Dalli M, Hamidi MM. Early childhood caries update: a review of causes, diagnoses, and treatments. J. Natl. Sci. Biol. Med. 2013;4:29–38. doi: 10.4103/0976-9668.107257.
    1. Meyer, F. et al. Sociodemographic determinants of spatial disparities in early childhood caries: an ecological analysis in Braunschweig Germany. Commun. Dent. Oral Epidemiol.45(5), 442–448 (2017).
    1. Petersson GH, Bratthall D. The caries decline: a review of reviews. Eur. J. Oral Sci. 1996;104:436–443. doi: 10.1111/j.1600-0722.1996.tb00110.x.
    1. Lagerweij MD, van Loveren C. Declining caries trends: are we satisfied? Curr. Oral Health Rep. 2015;2:212–217. doi: 10.1007/s40496-015-0064-9.
    1. Olczak-Kowalczyk D, Gozdowski D, Kaczmarek U. Dental caries in permanent dentition in children aged 5 and 7 in Poland and its association with dental caries in primary dentition. Nowa Stomatol. 2017;22:129–141.
    1. Basner, R., Santamaria, R. M., Schmoeckel, J., Schüler, E. & Spliet, C. H. Epidemiologische Begleituntersuchungen zur Gruppenprophylaxe 2016. Deutsche Arbeitsgemeinschaft für Jugendzahnpflege (2017).
    1. Chrisopoulos, S. & Harford, J. E. Oral health and dental care in Australia: key facts and figures 2015. Australian Institute of Health and Welfare and the University of Adelaide (2016).
    1. Bugis BA. Early childhood caries and the impact of current US Medicaid program: an overview. Int. J. Den. 2012;2012:348237–348237.
    1. Fejerskov O, Nyvad B, Kidd E. Dental Caries: The Disease and Its Clinical Management. 3. New York: Wiley Blackwell; 2015.
    1. Moynihan PJ, Kelly SA. Effect on caries of restricting sugars intake: systematic review to inform WHO guidelines. J. Dent. Res. 2014;93:8–18. doi: 10.1177/0022034513508954.
    1. Loveren, C. v. Toothpastes. Vol. 23 (Karger, Berlin, 2013).
    1. Wierichs RJ, et al. Effects of dentifrices differing in fluoride compounds on artificial enamel caries lesions in vitro. Odontology. 2017;105:36–45. doi: 10.1007/s10266-016-0233-x.
    1. Walsh, T., Worthington, H. V., Glenny, A. M., Marinho, V. C. & Jeroncic, A. Fluoride toothpastes of different concentrations for preventing dental caries. Cochrane Database Syst. Rev.3, Cd007868 (2019).
    1. Hellwig E, Altenburger M, Attin T, Lussi A, Buchalla W. Remineralization of initial carious lesions in deciduous enamel after application of dentifrices of different fluoride concentrations. Clin. Oral Investig. 2010;14:265–269. doi: 10.1007/s00784-009-0290-4.
    1. Epple M, Enax J. The chemistry of dental care (parts 1–3) ChemViews Mag. 2018 doi: 10.1002/chemv.201800053.
    1. BfR. Für gesunde Zähne: Fluorid-Vorbeugung bei Säuglingen und Kleinkindern (2018).
    1. Strittholt CA, McMillan DA, He T, Baker RA, Barker ML. A randomized clinical study to assess ingestion of dentifrice by children. Regul. Toxicol. Pharmacol. 2016;75:66–71. doi: 10.1016/j.yrtph.2015.12.008.
    1. Bentley EM, Ellwood RP, Davies RM. Fluoride ingestion from toothpaste by young children. Br. Dent. J. 1999;186:460–462. doi: 10.1038/sj.bdj.4800140.
    1. Rock WP. Young children and fluoride toothpaste. Br. Dent. J. 1994;177:17–20. doi: 10.1038/sj.bdj.4808490.
    1. Borysewicz-Lewicka M, Opydo-Szymaczek J, Opydo J. Fluoride ingestion after brushing with a gel containing a high concentration of fluoride. Biol. Trace Elem. Res. 2007;120:114–120. doi: 10.1007/s12011-007-0060-6.
    1. Opydo-Szymaczek J, Opydo J. Salivary fluoride concentrations and fluoride ingestion following application of preparations containing high concentration of fluoride. Biol. Trace Elem. Res. 2010;137:159–167. doi: 10.1007/s12011-009-8575-7.
    1. Aulestia, F. J. et al. Fluoride exposure alters Ca2+ signaling and mitochondrial function in enamel cells. Sci. Signal.13, eaay0086 (2020).
    1. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. 2002;41:3130–3146. doi: 10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>;2-1.
    1. Brown PW, Constantz B. Hydroxyapatite and Related Materials. Boca Raton: CRC Press; 1994.
    1. Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat. Nanotechnol. 2010;5:565–569. doi: 10.1038/nnano.2010.83.
    1. Enax J, Fabritius H-O, Fabritius-Vilpoux K, Amaechi BT, Meyer F. Modes of action and clinical efficacy of particulate hydroxyapatite in preventive oral health care—state of the art. Open Dent. J. 2019;13:274–287. doi: 10.2174/1874210601913010274.
    1. Kensche A, et al. Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ. Arch. Oral Biol. 2017;80:18–26. doi: 10.1016/j.archoralbio.2017.03.013.
    1. Schlagenhauf U, et al. Impact of a non-fluoridated microcrystalline hydroxyapatite dentifrice on enamel caries progression in highly caries-susceptible orthodontic patients: a randomized, controlled 6-month trial. J. Invest. Clin. Dent. 2019;10:e12399. doi: 10.1111/jicd.12399.
    1. Amaechi BT, et al. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open. 2019;5:18. doi: 10.1038/s41405-019-0026-8.
    1. Cieplik F, et al. Ca2+ release and buffering effects of synthetic hydroxyapatite following bacterial acid challenge. BMC Oral Health. 2020;20:85. doi: 10.1186/s12903-020-01080-z.
    1. Fabritius-Vilpoux K, Enax J, Herbig M, Raabe D, Fabritius H-O. Quantitative affinity parameters of synthetic hydroxyapatite and enamel surfaces in vitro. Bioinspir. Biomim. Nanbiomater. 2019;8:141–153.
    1. Hagenfeld D, et al. No differences in microbiome changes between anti-adhesive and antibacterial ingredients in toothpastes during periodontal therapy. J. Periodont. Res. 2019;54:435–443. doi: 10.1111/jre.12645.
    1. Harks I, et al. Impact of the daily use of a microcrystal hydroxyapatite dentifrice on de novo plaque formation and clinical/microbiological parameters of periodontal health: a randomized trial. PLoS ONE. 2016;11:e0160142. doi: 10.1371/journal.pone.0160142.
    1. Hu ML, et al. Effect of desensitizing toothpastes on dentine hypersensitivity: a systematic review and meta-analysis. J. Dent. 2018;75:12–21. doi: 10.1016/j.jdent.2018.05.012.
    1. Kani K, et al. Effect of apatite-containing dentifrices on dental caries in school children. J. Dent. Health. 1989;19:104–109. doi: 10.5834/jdh.39.104.
    1. Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J. Dent. 2011;39:430–437. doi: 10.1016/j.jdent.2011.03.008.
    1. Hannig C, Basche S, Burghardt T, Al-Ahmad A, Hannig M. Influence of a mouthwash containing hydroxyapatite microclusters on bacterial adherence in situ. Clin. Oral Investig. 2013;17:805–814. doi: 10.1007/s00784-012-0781-6.
    1. Hiller K-A, Buchalla W, Grillmeier I, Neubauer C, Schmalz G. In vitro effects of hydroxyapatite containing toothpastes on dentin permeability after multiple applications and ageing. Sci. Rep. 2018;8:4888. doi: 10.1038/s41598-018-22764-1.
    1. Najibfard K, Ramalingam K, Chedjieu I, Amaechi BT. Remineralization of early caries by a nano-hydroxyapatite dentifrice. J. Clin. Dent. 2011;22:139–143.
    1. Nobre CMG, Pütz N, Hannig M. Adhesion of hydroxyapatite nanoparticles to dental materials under oral conditions. Scanning. 2020;2020:6065739. doi: 10.1155/2020/6065739.
    1. Grocholewicz K, et al. Effect of nano-hydroxyapatite and ozone on approximal initial caries: a randomized clinical trial. Sci. Rep. 2020;10:11192. doi: 10.1038/s41598-020-67885-8.
    1. Amaechi BT, AbdulAzees PA, Okoye LO, Meyer F, Enax J. Comparison of hydroxyapatite and fluoride oral care gels for remineralization of initial caries: a pH-cycling study. BDJ Open. 2020;6:9. doi: 10.1038/s41405-020-0037-5.
    1. Bossu M, et al. Enamel remineralization and repair results of biomimetic hydroxyapatite toothpaste on deciduous teeth: An effective option to fluoride toothpaste. J. Nanobiotechnol. 2019;17:17. doi: 10.1186/s12951-019-0454-6.
    1. Bossù M, et al. Morpho-chemical observations of human deciduous teeth enamel in response to biomimetic toothpastes treatment. Materials. 2020 doi: 10.3390/ma13081803.
    1. Epple M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta Biomater. 2018;77:1–14. doi: 10.1016/j.actbio.2018.07.036.
    1. Orsini G, et al. A double-blind randomized-controlled trial comparing the desensitizing efficacy of a new dentifrice containing carbonate/hydroxyapatite nanocrystals and a sodium fluoride/potassium nitrate dentifrice. J. Clin. Periodontol. 2010;37:510–517. doi: 10.1111/j.1600-051X.2010.01558.x.
    1. Ismail AI, et al. The international caries detection and assessment system (ICDAS): an integrated system for measuring dental caries. Commun. Dent. Oral Epidemiol. 2007;35:170–178. doi: 10.1111/j.1600-0528.2007.00347.x.
    1. Richards D. Outcomes, what outcomes? Evid. Based Dent. 2005;6:1. doi: 10.1038/sj.ebd.6400313.
    1. Shani S, Friedman M, Steinberg D. Relation between surface activity and antibacterial activity of amine-fluorides. Int. J. Pharm. 1996;131:33–39. doi: 10.1016/0378-5173(95)04299-7.
    1. Epple M, Enax J. Moderne Zahnpflege aus chemischer Sicht. Chem. Unserer Zeit. 2018;52:218–228. doi: 10.1002/ciuz.201800796.
    1. Kirsch J, et al. Influence of pure fluorides and stannous ions on the initial bacterial colonization in situ. Sci. Rep. 2019;9:18499. doi: 10.1038/s41598-019-55083-0.
    1. Stookey GK, et al. The relative anticaries effectiveness of three fluoride-containing dentifrices in Puerto Rico. Caries Res. 2004;38:542–550. doi: 10.1159/000080584.
    1. Biesbrock AR, Bartizek RD, Gerlach RW, Jacobs SA, Archila L. Effect of three concentrations of sodium fluoride dentifrices on clinical caries. Am. J. Dent. 2003;16:99–104.
    1. O'Leary TJ, Drake RB, Naylor JE. The plaque control record. J. Periodontol. 1972;43:38. doi: 10.1902/jop.1972.43.1.38.
    1. Lobene RR, Weatherford T, Ross NM, Lamm RA, Menaker L. A modified gingival index for use in clinical trials. Clin. Prev. Dent. 1986;8:3–6.
    1. Milsom, K. M., Blinkhorn, A. S. & Tickle, M. The incidence of dental caries in the primary molar teeth of young children receiving National Health Service funded dental care in practices in the North West of England. Br. Dent. J.205, E14; discussion 384–385 (2008).
    1. Piaggio G, Elbourne DR, Pocock SJ, Evans SJ, Altman DG. Reporting of noninferiority and equivalence randomized trials: extension of the CONSORT 2010 statement. JAMA. 2012;308:2594–2604. doi: 10.1001/jama.2012.87802.
    1. Wickham H. ggplot2. New York: Springer-Verlag; 2009.
    1. EU. REGULATION (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (2009).
    1. Lelli M, et al. Remineralization and repair of enamel surface by biomimetic Zn-carbonate hydroxyapatite containing toothpaste: a comparative in vivo study. Front. Physiol. 2014;5:333. doi: 10.3389/fphys.2014.00333.
    1. Sudradjat H, Meyer F, Loza K, Epple M, Enax J. In vivo effects of a hydroxyapatite-based oral care gel on the calcium and phosphorus levels of dental plaque. Eur. J. Dent. 2020;14:206–211. doi: 10.1055/s-0040-1708456.
    1. Enax J, Epple M. Die Charakterisierung von Putzkörpern in Zahnpasten. Dtsch. Zahnärztl. Z. 2018;73:100–108.
    1. Nedeljkovic I, et al. Lack of buffering by composites promotes shift to more cariogenic bacteria. J. Dent. Res. 2016;95:875–881. doi: 10.1177/0022034516647677.
    1. Shaw L, Murray JJ, Burchell CK, Best JS. Calcium and phosphorus content of plaque and saliva in relation to dental caries. Caries Res. 1983;17:543–548. doi: 10.1159/000260715.
    1. Yaacob M, et al. Powered versus manual toothbrushing for oral health. Cochrane Database Syst. Rev. 2014 doi: 10.1002/14651858.
    1. Krzysztoszek J, Kleka P, Laudańska-Krzemińska I. Assessment of selected nutrient intake by Polish preschool children compared to dietary recommendations: a meta-analysis. Arch. Med. Sci. 2020;16:635–647. doi: 10.5114/aoms.2020.93046.
    1. Teo TK, Ashley PF, Louca C. An in vivo and in vitro investigation of the use of ICDAS, DIAGNOdent pen and CarieScan PRO for the detection and assessment of occlusal caries in primary molar teeth. Clin. Oral Investig. 2014;18:737–744. doi: 10.1007/s00784-013-1021-4.
    1. Cvikl, B., Moritz, A. & Bekes, K. Pit and fissure sealants—a comprehensive review. Den. J. (Basel)6, 18 (2018).
    1. Ramamurthy P, et al. Sealants for preventing dental caries in primary teeth. Rev: Cochrane Database Syst; 2018.
    1. Ahovuo‐Saloranta, A. et al. Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database Syst. Rev.7, CD001830 (2017).

Source: PubMed

3
S'abonner