The long-term anterior segment configuration after pediatric cataract surgery and the association with secondary glaucoma

Ding Chen, Xian-Hui Gong, He Xie, Xue-Ning Zhu, Jin Li, Yun-E Zhao, Ding Chen, Xian-Hui Gong, He Xie, Xue-Ning Zhu, Jin Li, Yun-E Zhao

Abstract

Secondary glaucoma constitutes major sight-threatening complication of pediatric cataract surgery, yet the etiology remains unclear. The purpose of this study was to investigate the long-term anterior segment configuration and the association with secondary glaucoma in pediatric pseudophakia. Ultrasound biomicroscopy (UBM) was performed on 40 eyes of 26 children underwent pediatric cataract surgery and intraocular lens (IOL) implantation. The anterior chamber depth (ACD), angle-opening distance at 500 μm (AOD500), trabecular-iris angle (TIA), central corneal thickness (CCT), structural abnormities, IOL position, IOP, and incidence of glaucoma were evaluated. High insertion of iris, in which the iris root is attached more anteriorly than normal, was seen in 13 eyes (32.50%). IOL was located in the capsular bag in 19 eyes and in the ciliary sulcus in 21 eyes. Logistic regression analysis identified high insertion of iris (OR 3.40, 95% CI 1.03-11.17, p = 0.03) and IOL implantation in sulcus (OR 1.39, 95% CI 1.07-4.85, p = 0.04) as independent risk factors for glaucoma. The presence of high insertion of iris and IOL implantation in ciliary sulcus may increase the long-term risk of the development of secondary glaucoma after pediatric cataract surgery.

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1. Abnormities in the configuration of…
Figure 1. Abnormities in the configuration of the anterior segment in ultrasound biomicroscopy images.
(A) The normal angle structure of a phakic normal control. (B) High insertion of iris in the pediatric pseudophakia. The iris root was located more anteriorly than that of normal control. (C) Peripheral anterior synechia of iris. (D) Image of an iridociliary cyst causing localized angle narrowing. (E) An enlarged Soemmering’s ring causing angle narrowing. (F) Image of residual lens material in the capsular bag.
Figure 2. The intraocular lens (IOL) position…
Figure 2. The intraocular lens (IOL) position in ultrasound biomicroscopy images.
(A) IOL implantation in the capsular bag with good position. (B) IOL implantation in the ciliary sulcus with good position. (C) IOL tilting due to asymmetric fixation with optic and one haptic in the bag while the other haptic in the sulcus. (D) IOL decentration and anterior synechia of iris. (E) IOL subluxation due to insufficient support of capsular bag. (F) IOL forward shifting and embedding into iridociliary tissue.
Figure 3. Ultrasound biomicroscopy (UBM) of the…
Figure 3. Ultrasound biomicroscopy (UBM) of the anterior segment of pediatric pseudophakia.
(A) UBM images of the anterior chamber and intraocular lens (IOL). Anterior chamber depth (ACD) was determined from the central inner corneal surface, perpendicular to the corneal surface to the most anteriorly visible part of the IOL. (B) Quantitative angle measurement. Angle-opening distance at 500 μm (AOD500) was measured on a line perpendicular to the trabecular meshwork at points 500 μm from the scleral spur. Trabecular-iris angle (TIA) was measured with the apex in the iris recess and the arms of the angle passing through a point on the trabecular meshwork 500 μm from the scleral spur and the point on the iris perpendicularly opposite.

References

    1. Foster A., Gilbert C. & Rahi J. Epidemiology of cataract in childhood: a global perspective. Journal of cataract and refractive surgery 23 Suppl 1, 601–604 (1997).
    1. Holmes J. M., Leske D. A., Burke J. P. & Hodge D. O. Birth prevalence of visually significant infantile cataract in a defined U.S. population. Ophthalmic epidemiology 10, 67–74 (2003).
    1. Stayte M., Reeves B. & Wortham C. Ocular and vision defects in preschool children. The British journal of ophthalmology 77, 228–232 (1993).
    1. Mataftsi A. et al.. Postoperative glaucoma following infantile cataract surgery: an individual patient data meta-analysis. JAMA ophthalmology 132, 1059–1067, doi: 10.1001/jamaophthalmol.2014.1042 (2014).
    1. Ram J., Brar G. S., Kaushik S., Gupta A. & Gupta A. Role of posterior capsulotomy with vitrectomy and intraocular lens design and material in reducing posterior capsule opacification after pediatric cataract surgery. Journal of cataract and refractive surgery 29, 1579–1584 (2003).
    1. Mayer D. L., Moore B. & Robb R. M. Assessment of vision and amblyopia by preferential looking tests after early surgery for unilateral congenital cataracts. Journal of pediatric ophthalmology and strabismus 26, 61–68 (1989).
    1. Vasavada A. R., Raj S. M. & Nihalani B. Rate of axial growth after congenital cataract surgery. American journal of ophthalmology 138, 915–924, doi: 10.1016/j.ajo.2004.06.068 (2004).
    1. Rabiah P. K. Frequency and predictors of glaucoma after pediatric cataract surgery. American journal of ophthalmology 137, 30–37 (2004).
    1. Tatham A., Odedra N., Tayebjee S., Anwar S. & Woodruff G. The incidence of glaucoma following paediatric cataract surgery: a 20-year retrospective study. Eye 24, 1366–1375, doi: 10.1038/eye.2010.46 (2010).
    1. Freedman S. F. et al.. Glaucoma-Related Adverse Events in the First 5 Years After Unilateral Cataract Removal in the Infant Aphakia Treatment Study. JAMA ophthalmology 133, 907–914, doi: 10.1001/jamaophthalmol.2015.1329 (2015).
    1. Chak M. & Rahi J. S. & British Congenital Cataract Interest, G. Incidence of and factors associated with glaucoma after surgery for congenital cataract: findings from the British Congenital Cataract Study. Ophthalmology 115, 1013–1018, e1012, doi: 10.1016/j.ophtha.2007.09.002 (2008).
    1. Beck A. D. et al.. Glaucoma-related adverse events in the Infant Aphakia Treatment Study: 1-year results. Archives of ophthalmology 130, 300–305, doi: 10.1001/archophthalmol.2011.347 (2012).
    1. Pavlin C. J., Harasiewicz K., Sherar M. D. & Foster F. S. Clinical use of ultrasound biomicroscopy. Ophthalmology 98, 287–295 (1991).
    1. El Shakankiri N. M., Bayoumi N. H., Abdallah A. H. & El Sahn M. M. Role of ultrasound and biomicroscopy in evaluation of anterior segment anatomy in congenital and developmental cataract cases. Journal of cataract and refractive surgery 35, 1893–1905, doi: 10.1016/j.jcrs.2009.07.007 (2009).
    1. Nishijima K., Takahashi K. & Yamakawa R. Ultrasound biomicroscopy of the anterior segment after congenital cataract surgery. American journal of ophthalmology 130, 483–489 (2000).
    1. Asrani S. G. & Wilensky J. T. Glaucoma after congenital cataract surgery. Ophthalmology 102, 863–867 (1995).
    1. Swamy B. N. et al.. Secondary glaucoma after paediatric cataract surgery. The British journal of ophthalmology 91, 1627–1630, doi: 10.1136/bjo.2007.117887 (2007).
    1. Chen T. C., Walton D. S. & Bhatia L. S. Aphakic glaucoma after congenital cataract surgery. Archives of ophthalmology 122, 1819–1825, doi: 10.1001/archopht.122.12.1819 (2004).
    1. Kuhli-Hattenbach C., Luchtenberg M., Kohnen T. & Hattenbach L. O. Risk factors for complications after congenital cataract surgery without intraocular lens implantation in the first 18 months of life. American journal of ophthalmology 146, 1–7, doi: 10.1016/j.ajo.2008.02.014 (2008).
    1. Trivedi R. H., Wilson M. E. Jr. & Golub R. L. Incidence and risk factors for glaucoma after pediatric cataract surgery with and without intraocular lens implantation. Journal of AAPOS: the official publication of the American Association for Pediatric Ophthalmology and Strabismus/American Association for Pediatric Ophthalmology and Strabismus 10, 117–123, doi: 10.1016/j.jaapos.2006.01.003 (2006).
    1. Walton D. S. Pediatric aphakic glaucoma: a study of 65 patients. Transactions of the American Ophthalmological Society 93, 403–413, discussion 413–420 (1995).
    1. Katsimpris J. M., Petropoulos I. K. & Sunaric-Megevand G. Ultrasound biomicroscopy evaluation of angle closure in a patient with multiple and bilateral iridociliary cysts. Klinische Monatsblatter fur Augenheilkunde 224, 324–327, doi: 10.1055/s-2007-962951 (2007).
    1. Kung Y., Park S. C., Liebmann J. M. & Ritch R. Progressive synechial angle closure from an enlarging Soemmering ring. Archives of ophthalmology 129, 1631–1632, doi: 10.1001/archophthalmol.2011.344 (2011).
    1. Kitamura F., Inoue T., Kuroda U. & Tanihara H. Angle closure caused by a plateau-like iris associated with an enlarged Soemmering’s ring: a case report. BMC ophthalmology 16, 49, doi: 10.1186/s12886-016-0226-0 (2016).
    1. Nihalani B. R. & Vanderveen D. K. Secondary intraocular lens implantation after pediatric aphakia. Journal of AAPOS: the official publication of the American Association for Pediatric Ophthalmology and Strabismus/American Association for Pediatric Ophthalmology and Strabismus 15, 435–440, doi: 10.1016/j.jaapos.2011.05.019 (2011).
    1. Barnhorst D., Meyers S. M. & Myers T. Lens-induced glaucoma 65 years after congenital cataract surgery. American journal of ophthalmology 118, 807–808 (1994).
    1. Asrani S. et al.. Does primary intraocular lens implantation prevent “aphakic” glaucoma in children? Journal of AAPOS: the official publication of the American Association for Pediatric Ophthalmology and Strabismus/American Association for Pediatric Ophthalmology and Strabismus 4, 33–39 (2000).
    1. Buckley E. G., Klombers L. A., Seaber J. H., Scalise-Gordy A. & Minzter R. Management of the posterior capsule during pediatric intraocular lens implantation. American journal of ophthalmology 115, 722–728 (1993).
    1. Chak M., Wade A. & Rahi J. S. & British Congenital Cataract Interest, G. Long-term visual acuity and its predictors after surgery for congenital cataract: findings of the British congenital cataract study. Investigative ophthalmology & visual science 47, 4262–4269, doi: 10.1167/iovs.05-1160 (2006).
    1. Gogate P. M. et al.. Long term outcomes of bilateral congenital and developmental cataracts operated in Maharashtra, India. Miraj pediatric cataract study III. Indian journal of ophthalmology 62, 186–195, doi: 10.4103/0301-4738.128630 (2014).
    1. Magli A., Forte R. & Rombetto L. Long-term outcome of primary versus secondary intraocular lens implantation after simultaneous removal of bilateral congenital cataract. Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 251, 309–314, doi: 10.1007/s00417-012-1979-7 (2013).

Source: PubMed

3
S'abonner