Feasibility assessment of the Eye Scan Ultrasound System for cataract characterization and optimal phacoemulsification energy estimation: protocol for a pilot, nonblinded and monocentre study

Lorena Petrella, Sandrina Nunes, Fernando Perdigão, Marco Gomes, Mário Santos, Carlos Pinto, Miguel Morgado, António Travassos, Jaime Santos, Miguel Caixinha, Lorena Petrella, Sandrina Nunes, Fernando Perdigão, Marco Gomes, Mário Santos, Carlos Pinto, Miguel Morgado, António Travassos, Jaime Santos, Miguel Caixinha

Abstract

Background: Cataracts are lens opacifications that are responsible for more than half of blindness cases worldwide, and the only treatment is surgical intervention. Phacoemulsification surgery, the most frequently performed cataract surgery in developed countries, has associated risks, some of which are related to excessive phacoemulsification energy levels and times. The protocol proposed in herein will be used to evaluate the feasibility of a new experimental medical device, the Eye Scan Ultrasound System (ESUS), for the automatic classification of cataract type and severity and quantitative estimation of the optimal phacoemulsification energy.

Methods: The pilot study protocol will be used to evaluate the feasibility and safety of the ESUS in clinical practice. The study will be conducted in subjects with age-related cataracts and on healthy subjects as controls. The procedures include data acquisition with the experimental ESUS, classification based on the Lens Opacity Classification System III (LOCS III, comparator) using a slit lamp, contrast sensitivity test, optical coherence tomography, specular microscopy and surgical parameters. ESUS works in A-scan pulse-echo mode, with a central frequency of 20 MHz. From the collected signals, acoustic parameters will be extracted and used for automatic cataract characterization and optimal phacoemulsification energy estimation. The study includes two phases. The data collected in the first phase (40 patients, 2 eyes per patient) will be used to train the ESUS algorithms, while the data collected in the second phase (10 patients, 2 eyes per patient) will be used to assess the classification performance. System safety will be monitored during the study.

Discussion: The present pilot study protocol will evaluate the feasibility and safety of the ESUS for use in clinical practice, and the results will support a larger clinical study for the efficacy assessment of the ESUS as a diagnostic tool. Ultimately, the ESUS is expected to represent a valuable tool for surgical planning by reducing complications associated with excessive levels of phacoemulsification energy and surgical times, which will have a positive impact on healthcare systems and society. The study is not yet recruiting.

Trial registration: ClinicalTrials.gov identifier NCT04461912 , registered on July 8, 2020.

Keywords: Cataract; Diagnosis; Phacoemulsification surgery; Ultrasound.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Diagram of the main ESUS components

References

    1. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523(7562):607–611. doi: 10.1038/nature14650.
    1. Sunkireddy P, Jha SN, Kanwar JR, Yadav SC. Natural antioxidant biomolecules promises future nanomedicine based therapy for cataract. Colloids Surf B: Biointerfaces. 2013;112:554–562. doi: 10.1016/j.colsurfb.2013.07.068.
    1. Silverman R. Focused ultrasound in ophthalmology. Clin Ophthalmol. 2016;10:1865–1875. doi: 10.2147/OPTH.S99535.
    1. Thijssen JM. The history of ultrasound techniques in ophthalmology. Ultrasound Med Biol. 1993;19(8):599–618. doi: 10.1016/0301-5629(93)90068-Y.
    1. Coleman DJ, Carlin B. A new system for visual axis measurements in the human eye using ultrasound. Arch Ophthalmol. 1967;77(1):124–127. doi: 10.1001/archopht.1967.00980020126027.
    1. Linebarger EJ, Hardten DR, Shah GK, Lindstrom RL. Phacoemulsification and modern cataract surgery. Surv Ophthalmol. 1999;44(2):123–147. doi: 10.1016/S0039-6257(99)00085-5.
    1. Chan E, Mahroo OAR, Spalton DJ. Complications of cataract surgery. Clin Exp Optom. 2010;93(6):379–389. doi: 10.1111/j.1444-0938.2010.00516.x.
    1. Caixinha M, Jesus DA, Velte E, Santos MJ, Santos JB. Using ultrasound backscattering signals and Nakagami statistical distribution to assess regional cataract hardness. IEEE Trans Biomed Eng. 2014;61(12):2921–2929. doi: 10.1109/TBME.2014.2335739.
    1. Jansson F, Kock E. Determination of the velocity of ultrasound in the human lens and vitreous. Acta Ophthalmol. 1962;40:420–433. doi: 10.1111/j.1755-3768.1962.tb02390.x.
    1. Sugata Y, Murakami K, Ito M, Shiina T, Yamamoto Y. An application of ultrasonic tissue characterization to the diagnosis of cataract. Acta Ophthalmol. 1992;204(2):35–39.
    1. Paunksnis A, Kurapkiene S, Maciulis A, Kopustinskas A, Paunksniene M. Ultrasound quantitative evaluation of human eye cataract. Informatica. 2007;18(2):267–278. doi: 10.15388/Informatica.2007.176.
    1. Caixinha M, Amaro J, Santos M, Perdigao F, Gomes M, Santos J. In-vivo automatic nuclear cataract detection and classification in an animal model by ultrasounds. IEEE Trans Biomed Eng. 2016;63(11):2326–2335. doi: 10.1109/TBME.2016.2527787.
    1. Huang CC, Ameri H, DeBoer C, Rowley AP, Xu X, Sun L, et al. Evaluation of lens hardness in cataract surgery using high-frequency ultrasonic parameters in vitro. Ultrasound Med Biol. 2007;33(10):1609–1616. doi: 10.1016/j.ultrasmedbio.2007.05.002.
    1. Tabandeh H, Wilkins M, Thompson G, Nassiri D, Karim A. Hardness and ultrasonic characteristics of the human crystalline lens. J Cataract Refract Surg. 2000;26(6):838–841. doi: 10.1016/S0886-3350(00)00305-9.
    1. Tsui PH, Huang CC, Chang CC, Wang SH, Shung KK. Feasibility study of using high-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro. Phys Med Biol. 2007;52(21):6413–6425. doi: 10.1088/0031-9155/52/21/005.
    1. Huang CC, Zhou Q, Ameri H, Wu DW, Sun L, Wang SH, et al. Determining the acoustic properties of the lens using a high-frequency ultrasonic needle transducer. Ultrasound Med Biol. 2007;33(12):1971–1977. doi: 10.1016/j.ultrasmedbio.2007.06.004.
    1. Huang C, chung, Chen R, Tsui P hsiang, Zhou Q, Humayun MS, Shung K. Measurements of attenuation coefficient for evaluating the hardness of a cataract lens by a high-frequency ultrasonic needle transducer. Phys Med Biol. 2009;54(19):5981–5994. doi: 10.1088/0031-9155/54/19/021.
    1. Tsui PH, Huang CC, Zhou Q, Shung KK. Cataract measurement by estimating the ultrasonic statistical parameter using an ultrasound needle transducer: an in vitro study. Physiol Meas. 2011;32(5):513–522. doi: 10.1088/0967-3334/32/5/002.
    1. Zhou Z, Huang CC, Shung KK, Tsui PH, Fang J, Ma HY, et al. Entropic imaging of cataract lens: an in vitro study. PLoS One. 2014;9(4):e96195.
    1. Caixinha M, Santos M, Santos J. Automatic cataract hardness classification ex vivo by ultrasound techniques. Ultrasound Med Biol. 2016;42(4):989–998. doi: 10.1016/j.ultrasmedbio.2015.11.021.
    1. de Korte CL, van der Steen AFW, Thijssen JM. Acoustic velocity and attenuation of eye tissues at 20 MHz. Ultrasound Med Biol. 1994;20(5):471–480. doi: 10.1016/0301-5629(94)90102-3.
    1. Santos J, Gomes M, Santos M, Perdigão F, Morgado M, Caixinha M, et al. Sistema ultrassônico de exame ocular para deteção precoce e classificação da catarata em tempo real. Portugal; PT109646B. 2019.
    1. Petrella L, Gomes M, Perdigão F, Santos M, Fernandes P, Pinto C, et al. Eye Scan Ultrasound System for automatic cataract detection: from a preclinical to a clinical prototype. In: Medicon [Internet]. Vol. 1. Coimbra: Springer; 2020. p. 811–9. Available from: .
    1. Chylack LT, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, et al. The lens opacities classification system III. Arch Ophthalmol. 1993;111:831–836. doi: 10.1001/archopht.1993.01090060119035.
    1. Abdelkader H, Alany RG, Pierscionek B. Age-related cataract and drug therapy: opportunities and challenges for topical antioxidant delivery to the lens. J Pharm Pharmacol. 2015;67(4):537–550. doi: 10.1111/jphp.12355.
    1. Chan AW, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, et al. CONSORT 2010 statement: extension to randomised pilot and feasibility trials. BMJ. 2016;24:i5239. doi: 10.1136/bmj.i5239.
    1. Thabane L, Lancaster G. A guide to the reporting of protocols of pilot and feasibility trials. Pilot Feasibility Stud. 2019;5(1):37.
    1. Lancaster GA, Thabane L. Guidelines for reporting non-randomised pilot and feasibility studies. Pilot Feasibility Stud. 2019;5(1):114.
    1. Billingham SA, Whitehead AL, Julious SA. An audit of sample sizes for pilot and feasibility trials being undertaken in the United Kingdom registered in the United Kingdom Clinical Research Network database. BMC Med Res Methodol. 2013;13(1).
    1. Petrella L, Fernandes P, Santos M, Caixinha M, Nunes S, Pinto C, et al. Safety assessment of an A-scan ultrasonic system for ophthalmic use. J Ultrasound Med. 2020;39(11):2143–2150. doi: 10.1002/jum.15323.
    1. ISO. DIN EN ISO 14971:2007 Medical devices - application of risk management to medical devices. International Organization for Standarization; 2007.
    1. IEC. IEC 60601-2-37, Medical electrical equipment – Part 2-37: particular requirements for the basic safety and essential performance of ultrasonic medical diagnostic and monitoring equipment. Geneva: International Electrotechnical Commission; 2007.
    1. IEC. IEC 62127-1 ultrasonics - hydrophones - part 1: measurement and characterization of medical ultrasonic fields up to 40 MHz. Geneva: International Electrotechnical Commission; 2007.
    1. IEC. IEC 62359 ultrasonics - field characterization - test methods for the determination of thermal and mechanical indices related to medical diagnostic ultrasonic fields. Geneva: International Electrotechnical Commission; 2017.

Source: PubMed

3
S'abonner