Dedicated MRI staging versus surgical staging of peritoneal metastases in colorectal cancer patients considered for CRS-HIPEC; the DISCO randomized multicenter trial

M P Engbersen, C J V Rijsemus, J Nederend, A G J Aalbers, I H J T de Hingh, V Retel, D M J Lambregts, E J R J Van der Hoeven, D Boerma, M J Wiezer, M De Vries, E V E Madsen, A R M Brandt-Kerkhof, S Van Koeverden, P R De Reuver, R G H Beets-Tan, N F M Kok, M J Lahaye, M P Engbersen, C J V Rijsemus, J Nederend, A G J Aalbers, I H J T de Hingh, V Retel, D M J Lambregts, E J R J Van der Hoeven, D Boerma, M J Wiezer, M De Vries, E V E Madsen, A R M Brandt-Kerkhof, S Van Koeverden, P R De Reuver, R G H Beets-Tan, N F M Kok, M J Lahaye

Abstract

Background: Selecting patients with peritoneal metastases from colorectal cancer (CRCPM) who might benefit from cytoreductive surgery followed by hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) is challenging. Computed tomography generally underestimates the peritoneal tumor load. Diagnostic laparoscopy is often used to determine whether patients are amenable for surgery. Magnetic resonance imaging (MRI) has shown to be accurate in predicting completeness of CRS. The aim of this study is to determine whether MRI can effectively reduce the need for surgical staging.

Methods: The study is designed as a multicenter randomized controlled trial (RCT) of colorectal cancer patients who are deemed eligible for CRS-HIPEC after conventional CT staging. Patients are randomly assigned to either MRI based staging (arm A) or to standard surgical staging with or without laparoscopy (arm B). In arm A, MRI assessment will determine whether patients are eligible for CRS-HIPEC. In borderline cases, an additional diagnostic laparoscopy is advised. The primary outcome is the number of unnecessary surgical procedures in both arms defined as: all surgeries in patients with definitely inoperable disease (PCI > 24) or explorative surgeries in patients with limited disease (PCI < 15). Secondary outcomes include correlations between surgical findings and MRI findings, cost-effectiveness, and quality of life (QOL) analysis.

Conclusion: This randomized trial determines whether MRI can effectively replace surgical staging in patients with CRCPM considered for CRS-HIPEC.

Trial registration: Registered in the clinical trials registry of U.S. National Library of Medicine under NCT04231175 .

Keywords: CRS-HIPEC; Colorectal peritoneal metastases; RCT; Surgical staging, MRI.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow diagram of DISCO trial

References

    1. Kerscher A, Chua T, Gasser M, Maeder U, Kunzmann V, Isbert C, et al. Impact of peritoneal carcinomatosis in the disease history of colorectal cancer management: a longitudinal experience of 2406 patients over two decades. Br J Cancer. 2013;108(7):1432. doi: 10.1038/bjc.2013.82.
    1. De Cuba E, Kwakman R, Knol D, Bonjer H, Meijer G, Te Velde E. Cytoreductive surgery and HIPEC for peritoneal metastases combined with curative treatment of colorectal liver metastases: systematic review of all literature and meta-analysis of observational studies. Cancer Treat Rev. 2013;39(4):321–327. doi: 10.1016/j.ctrv.2012.11.003.
    1. Elias D, Lefevre JH, Chevalier J, Brouquet A, Marchal F, Classe JM, Ferron G, Guilloit JM, Meeus P, Goéré D, Bonastre J. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009;27(5):681–685. doi: 10.1200/JCO.2008.19.7160.
    1. Franko J, Ibrahim Z, Gusani NJ, Holtzman MP, Bartlett DL, Zeh HJ., III Cytoreductive surgery and hyperthermic intraperitoneal chemoperfusion versus systemic chemotherapy alone for colorectal peritoneal carcinomatosis. Cancer. 2010;116(16):3756–3762. doi: 10.1002/cncr.25116.
    1. Simkens GA, Rovers KP, Nienhuijs SW, de Hingh IH. Patient selection for cytoreductive surgery and HIPEC for the treatment of peritoneal metastases from colorectal cancer. Cancer Manag Res. 2017;9:259–266. doi: 10.2147/CMAR.S119569.
    1. Iversen LH, Rasmussen PC, Laurberg S. Value of laparoscopy before cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for peritoneal carcinomatosis. Br J Surg. 2013;100(2):285–292. doi: 10.1002/bjs.8908.
    1. van Oudheusden TR, Braam HJ, Luyer MD, Wiezer MJ, van Ramshorst B, Nienhuijs SW, et al. Peritoneal cancer patients not suitable for cytoreductive surgery and HIPEC during explorative surgery: risk factors, treatment options, and prognosis. Ann Surg Oncol. 2015;22(4):1236–1242. doi: 10.1245/s10434-014-4148-x.
    1. Pomel C, Appleyard TL, Gouy S, Rouzier R, Elias D. The role of laparoscopy to evaluate candidates for complete cytoreduction of peritoneal carcinomatosis and hyperthermic intraperitoneal chemotherapy. Eur J Surg Oncol. 2005;31(5):540–543. doi: 10.1016/j.ejso.2005.01.009.
    1. Marmor RA, Kelly KJ, Lowy AM, Baumgartner JM. Laparoscopy is Safe and Accurate to Evaluate Peritoneal Surface Metastasis Prior to Cytoreductive Surgery. Ann Surg Oncol. 2016;23(5):1461–1467. doi: 10.1245/s10434-015-4958-5.
    1. Hentzen J, Constansia RDN, Been LB, Hoogwater FJH, van Ginkel RJ, van Dam GM, et al. Diagnostic laparoscopy as a selection tool for patients with colorectal peritoneal metastases to prevent a non-therapeutic laparotomy during Cytoreductive surgery. Ann Surg Oncol. 2020;27(4):1084–1093. doi: 10.1245/s10434-019-07957-w.
    1. Quénet F, Elias D, Roca L, Goéré D, Ghouti L, Pocard M, Facy O, Arvieux C, Lorimier G, Pezet D, Marchal F, Loi V, Meeus P, Juzyna B, de Forges H, Paineau J, Glehen O, MARIANI P, BRIGAND C, BEREDER JM, MSIKA S, PORTIER G, RAT P. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy versus cytoreductive surgery alone for colorectal peritoneal metastases (PRODIGE 7): a multicentre, randomised, open-label, phase 3 trial. The Lancet Oncology. 2021;22(2):256–266. doi: 10.1016/S1470-2045(20)30599-4.
    1. Esquivel J, Chua TC, Stojadinovic A, Melero JT, Levine EA, Gutman M, Howard R, Piso P, Nissan A, Gomez-Portilla A, Gonzalez-Bayon L, Gonzalez-Moreno S, Shen P, Stewart JH, Sugarbaker PH, Barone RM, Hoefer R, Morris DL, Sardi A, Sticca RP. Accuracy and clinical relevance of computed tomography scan interpretation of peritoneal cancer index in colorectal cancer peritoneal carcinomatosis: a multi-institutional study. J Surg Oncol. 2010;102(6):565–570. doi: 10.1002/jso.21601.
    1. Low RN, Barone RM, Lucero J. Comparison of MRI and CT for predicting the peritoneal Cancer index (PCI) preoperatively in patients being considered for cytoreductive surgical procedures. Ann Surg Oncol. 2015;22(5):1708–1715. doi: 10.1245/s10434-014-4041-7.
    1. Duhr CD, Kenn W, Kickuth R, Kerscher AG, Germer C-T, Hahn D, et al. Optimizing of preoperative computed tomography for diagnosis in patients with peritoneal carcinomatosis. World J Surg Oncol. 2011;9(1):171. doi: 10.1186/1477-7819-9-171.
    1. van’t Sant I, van Eden WJ, Engbersen MP, Kok NFM, Woensdregt K, Lambregts DMJ, et al. Diffusion-weighted MRI assessment of the peritoneal cancer index before cytoreductive surgery. Br J Surg. 2019;106(4):491–498. doi: 10.1002/bjs.10989.
    1. Koh FHX, Tan KK, Teo LLS, Ang BWL, Thian YL. Prospective comparison between magnetic resonance imaging and computed tomography in colorectal cancer staging. ANZ J Surg. 2018;88(6):E498–E502. doi: 10.1111/ans.14138.
    1. Dresen RC, De Vuysere S, De Keyzer F, Van Cutsem E, Prenen H, Vanslembrouck R, et al. Whole-body diffusion-weighted MRI for operability assessment in patients with colorectal cancer and peritoneal metastases. Cancer Imaging. 2019;19(1):1. doi: 10.1186/s40644-018-0187-z.
    1. Zhang H, Dai W, Fu C, Yan X, Stemmer A, Tong T, et al. Diagnostic value of whole-body MRI with diffusion-weighted sequence for detection of peritoneal metastases in colorectal malignancy. Cancer Biol Med. 2018;15(2):165–170. doi: 10.20892/j.issn.2095-3941.2017.0162.
    1. Kim HJ, Lee SS, Byun JH, Kim JC, Yu CS, Park SH, et al. Incremental value of liver MR imaging in patients with potentially curable colorectal hepatic metastasis detected at CT: a prospective comparison of diffusion-weighted imaging, gadoxetic acid–enhanced MR imaging, and a combination of both MR techniques. Radiology. 2014;274(3):712–722. doi: 10.1148/radiol.14140390.
    1. Achiam MP, Løgager VB, Skjoldbye B, Møller JM, Lorenzen T, Rasmussen VL, et al. Preoperative CT versus diffusion weighted magnetic resonance imaging of the liver in patients with rectal cancer; a prospective randomized trial. Peer J. 2016;4:e1532. doi: 10.7717/peerj.1532.
    1. Kuijpers AM, Aalbers AG, Nienhuijs SW, de Hingh IH, Wiezer MJ, van Ramshorst B, et al. Implementation of a standardized HIPEC protocol improves outcome for peritoneal malignancy. World J Surg. 2015;39(2):453–460. doi: 10.1007/s00268-014-2801-y.
    1. Kanters TA, Bouwmans CAM, van der Linden N, Tan SS, Hakkaart-van RL. Update of the Dutch manual for costing studies in health care. PLoS One. 2017;12(11):e0187477. doi: 10.1371/journal.pone.0187477.
    1. Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ, et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. J Natl Cancer Inst. 1993;85(5):365–376. doi: 10.1093/jnci/85.5.365.
    1. Oppe M, Devlin NJ, Szende A. EQ-5D value sets: inventory, comparative review and user guide: springer. 2007.
    1. Hakkaart-van Roijen L, Van der Linden N, Bouwmans C, Kanters T, Tan SJD, the Netherlands: Zorginstituut Nederland . Costing manual: Methodology of costing research and reference prices for economic evaluations in healthcare. 2015.
    1. Versteegh MM, Ramos IC, Buyukkaramikli NC, Ansaripour A, Reckers-Droog VT, Brouwer WBF. Severity-adjusted probability of being cost effective. Pharmacoeconomics. 2019;37(9):1155–1163. doi: 10.1007/s40273-019-00810-8.
    1. de Boer NL, Brandt-Kerkhof ARM, Madsen EVE, Diepeveen M, van Meerten E, van Eerden RAG, de Man FM, Bouamar R, Koolen SLW, de Hingh IHJT, Bakkers C, Rovers KP, Creemers GM, Deenen MJ, Kranenburg OW, Constantinides A, Mathijssen RHJ, Verhoef C, Burger JWA, Dutch Peritoneal Oncology Group (DPOG) Dutch Colorectal Cancer Group (DCCG) Concomitant intraperitoneal and systemic chemotherapy for extensive peritoneal metastases of colorectal origin: protocol of the multicentre, open-label, phase I, dose-escalation INTERACT trial. BMJ Open. 2019;9(12):e034508. doi: 10.1136/bmjopen-2019-034508.
    1. Rovers KP, Lurvink RJ, Wassenaar EC, Kootstra TJ, Scholten HJ, Tajzai R, Deenen MJ, Nederend J, Lahaye MJ, Huysentruyt CJ, van’t Erve I, Fijneman RJ, Constantinides A, Kranenburg O, Los M, Thijs AM, Creemers GM, Burger JW, Wiezer MJ, Boerma D, Nienhuijs SW, de Hingh IH. Repetitive electrostatic pressurised intraperitoneal aerosol chemotherapy (ePIPAC) with oxaliplatin as a palliative monotherapy for isolated unresectable colorectal peritoneal metastases: protocol of a Dutch, multicentre, open-label, single-arm, phase II study (CRC-PIPAC) BMJ Open. 2019;9(7):e030408. doi: 10.1136/bmjopen-2019-030408.
    1. Tabrizian P, Jayakrishnan TT, Zacharias A, Aycart S, Johnston FM, Sarpel U, Labow DM, Turaga KK. Incorporation of diagnostic laparoscopy in the management algorithm for patients with peritoneal metastases: a multi-institutional analysis. J Surg Oncol. 2015;111(8):1035–1040. doi: 10.1002/jso.23924.
    1. Jayakrishnan TT, Zacharias AJ, Sharma A, Pappas SG, Gamblin TC, Turaga KK. Role of laparoscopy in patients with peritoneal metastases considered for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC) World J Surg Oncol. 2014;12(1):270. doi: 10.1186/1477-7819-12-270.

Source: PubMed

3
S'abonner