Functional respiratory imaging assessment of budesonide/glycopyrrolate/formoterol fumarate and glycopyrrolate/formoterol fumarate metered dose inhalers in patients with COPD: the value of inhaled corticosteroids

Maarten van den Berge, Jan De Backer, Cedric Van Holsbeke, Wilfried De Backer, Roopa Trivedi, Martin Jenkins, Paul Dorinsky, Magnus Aurivillius, Maarten van den Berge, Jan De Backer, Cedric Van Holsbeke, Wilfried De Backer, Roopa Trivedi, Martin Jenkins, Paul Dorinsky, Magnus Aurivillius

Abstract

Background: For patients with chronic obstructive pulmonary disease (COPD), greater improvements in lung function have been demonstrated for triple versus dual inhaled therapies in traditional spirometry studies. This study was the first to use functional respiratory imaging (FRI), known for increased sensitivity to airway changes versus spirometry, to assess the effect of the inhaled corticosteroid (ICS) component (budesonide) on lung function in patients with moderate-to-severe COPD and a blood eosinophil count > 150 cells/mm3.

Methods: Patients in this Phase IIIb (NCT03836677), randomized, double-blind, crossover study received twice-daily budesonide/glycopyrrolate/formoterol fumarate (BGF) 320/18/9.6 μg fixed-dose triple therapy and glycopyrrolate/formoterol fumarate (GFF) 18/9.6 μg fixed-dose dual therapy over 4 weeks, each delivered via a single metered dose Aerosphere inhaler. Primary endpoints were the improvements from baseline for each treatment in specific (i.e. corrected for lobar volume) image-based airway volume (siVaw) and resistance (siRaw) measured via FRI taken at total lung capacity (Day 29). Secondary outcomes included spirometry and body plethysmography. Adverse events were monitored throughout the study.

Results: A total of 23 patients were randomized and included in the intent-to-treat analysis (mean age 64.9 years, 78.3% males, 43.5% current smokers, mean predicted post-bronchodilator forced expiratory volume in 1 s [FEV1] 63.6%). BGF and GFF both statistically significantly increased siVaw from baseline at Day 29 (geometric mean ratio [GM], 95% confidence interval [CI]: 1.72 [1.38, 2.13] and 1.53 [1.28, 1.83], respectively, both p < 0.0001), with a greater increase observed for BGF versus GFF (GM, 95% CI 1.09 [1.03, 1.16], p = 0.0061). Statistically significant reductions in siRaw were also observed with both BGF and GFF (GM, 95% CI 0.50 [0.39, 0.63] and 0.52 [0.40, 0.67], respectively, both p < 0.0001). Additionally, significant improvements from baseline in post-dose FEV1 were observed with BGF and GFF (mean 346 mL, p = 0.0003 and 273 mL, p = 0.0004, respectively). Safety findings were consistent with the known profiles of BGF and GFF.

Conclusions: As observed using FRI, triple therapy with BGF resulted in greater increases in airway volume, and reductions in airway resistance versus long-acting muscarinic antagonist/long-acting β2-agonist (LAMA/LABA) dual therapy with GFF, reflecting the ICS component's contribution in patients with moderate-to-severe COPD.

Trial registration: ClinicalTrials.gov, NCT03836677. Registered 11 February 2019, https://ichgcp.net/clinical-trials-registry/NCT03836677.

Keywords: Budesonide; COPD; Formoterol fumarate; Functional respiratory imaging; Glycopyrrolate; Triple therapy.

Conflict of interest statement

MvdB reports research grants paid to his institution from AstraZeneca, Chiesi, GlaxoSmithKline, and TEVA Pharma. JDB is the Chief Executive Officer and founder of FLUIDDA and holds shares in the company. CVH is an employee of FLUIDDA. WDB has no real or perceived conflicts of interest that relate to this manuscript. His department has received grants from AstraZeneca, Chiesi, and GlaxoSmithKline. RT, MJ, PD, and MA are employees of AstraZeneca and hold stock and/or stock options in the company.

Figures

Fig. 1
Fig. 1
Study design. BGF budesonide/glycopyrrolate/formoterol fumarate, BID twice-daily, GFF glycopyrrolate/formoterol fumarate
Fig. 2
Fig. 2
Geometric mean ratio to baseline: a siVaw and b siRaw at Day 29. ****p ≤ 0.0001, **p < 0.01. Error bars show 95% CI. BGF budesonide/glycopyrrolate/formoterol fumarate, CI confidence interval, GFF glycopyrrolate/formoterol fumarate, siRaw specific image-based airway resistance, siVaw specific image-based airway volume
Fig. 3
Fig. 3
Percent change from baseline to Day 29 in a siVaw and b siRaw. Images show one representative patient’s data for siVaw (mL/L) and siRaw (kPa·s) percent change from baseline to Day 29 at TLC. Green coloring represents a an increase in airways volume and b a decrease in airway resistance. Orange coloring indicates the converse. BGF budesonide/glycopyrrolate/formoterol fumarate, GFF glycopyrrolate/formoterol fumarate, siRaw specific image-based airway resistance, siVaw specific image-based airway volume, TLC total lung capacity

References

    1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease report. 2020. . Accessed March 02, 2021.
    1. Rabe KF, Martinez FJ, Ferguson GT, Wang C, Singh D, Wedzicha JA, et al. Triple inhaled therapy at two glucocorticoid doses in moderate-to-very-severe COPD. N Engl J Med. 2020;383(1):35–48. doi: 10.1056/NEJMoa1916046.
    1. Ferguson GT, Rabe KF, Martinez FJ, Fabbri LM, Wang C, Ichinose M, et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med. 2018;6(10):747–758. doi: 10.1016/S2213-2600(18)30327-8.
    1. Israel S, Kumar A, DeAngelis K, Aurivillius M, Dorinsky P, Roche N, et al. Pulmonary deposition of budesonide/glycopyrronium/formoterol fumarate dihydrate metered dose inhaler formulated using co-suspension delivery technology in healthy male subjects. Eur J Pharm Sci. 2020;153:105472. doi: 10.1016/j.ejps.2020.105472.
    1. Usmani O, Roche N, Abd Wahab E, Israel S, Jenkins M, Trivedi R, et al. A scintigraphy study of budesonide/glycopyrrolate/formoterol fumarate in patients with COPD. Chest. 2020;158(4):A2435–A2437. doi: 10.1016/j.chest.2020.09.023.
    1. (FDA) UFaDA. Section 5 - 510(k) Summary. (Department of Health and Human Services ed.: US Food & Drug Administration (FDA); 2020.
    1. Yanagawa M, Tomiyama N, Honda O, Kikuyama A, Sumikawa H, Inoue A, et al. Multidetector CT of the lung: image quality with garnet-based detectors. Radiology. 2010;255(3):944–954. doi: 10.1148/radiol.10091010.
    1. Tsukagoshi S, Ota T, Fujii M, Kazama M, Okumura M, Johkoh T. Improvement of spatial resolution in the longitudinal direction for isotropic imaging in helical CT. Phys Med Biol. 2007;52(3):791–801. doi: 10.1088/0031-9155/52/3/018.
    1. De Backer LA, Vos WG, Salgado R, De Backer JW, Devolder A, Verhulst SL, et al. Functional imaging using computer methods to compare the effect of salbutamol and ipratropium bromide in patient-specific airway models of COPD. Int J Chron Obstruct Pulmon Dis. 2011;6:637–646. doi: 10.2147/COPD.S21917.
    1. De Backer LA, Vos W, De Backer J, Van Holsbeke C, Vinchurkar S, De Backer W. The acute effect of budesonide/formoterol in COPD: a multi-slice computed tomography and lung function study. Eur Respir J. 2012;40(2):298–305. doi: 10.1183/09031936.00072511.
    1. Vos W, De Backer J, Poli G, De Volder A, Ghys L, Van Holsbeke C, et al. Novel functional imaging of changes in small airways of patients treated with extrafine beclomethasone/formoterol. Respiration. 2013;86(5):393–401. doi: 10.1159/000347120.
    1. De Backer W, De Backer J, Verlinden I, Leemans G, Van Holsbeke C, Mignot B, et al. Functional respiratory imaging assessment of glycopyrrolate and formoterol fumarate metered dose inhalers formulated using co-suspension delivery technology in patients with COPD. Ther Adv Respir Dis. 2020;14:1753466620916990. doi: 10.1177/1753466620916990.
    1. De Backer W, De Backer J, Vos W, Verlinden I, Van Holsbeke C, Clukers J, et al. A randomized study using functional respiratory imaging to characterize bronchodilator effects of glycopyrrolate/formoterol fumarate delivered by a metered dose inhaler using co-suspension delivery technology in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:2673–2684. doi: 10.2147/COPD.S171707.
    1. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004;23(6):932–946. doi: 10.1183/09031936.04.00014304.
    1. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–338. doi: 10.1183/09031936.05.00034805.
    1. De Backer JW, Vos WG, Vinchurkar SC, Claes R, Drollmann A, Wulfrank D, et al. Validation of computational fluid dynamics in CT-based airway models with SPECT/CT. Radiology. 2010;257(3):854–862. doi: 10.1148/radiol.10100322.
    1. Singh D, Papi A, Corradi M, Pavlišová I, Montagna I, Francisco C, et al. Single inhaler triple therapy versus inhaled corticosteroid plus long-acting β2-agonist therapy for chronic obstructive pulmonary disease (TRILOGY): a double-blind, parallel group, randomised controlled trial. Lancet. 2016;388(10048):963–973. doi: 10.1016/S0140-6736(16)31354-X.
    1. Lipson DA, Barnhart F, Brealey N, Brooks J, Criner GJ, Day NC, et al. Once-daily single-inhaler triple versus dual therapy in patients with COPD. N Engl J Med. 2018;378(18):1671–1680. doi: 10.1056/NEJMoa1713901.
    1. Singh D, Zhu CQ, Sharma S, Church A, Kalberg CJ. Daily variation in lung function in COPD patients with combined albuterol and ipratropium: results from a 4-week, randomized, crossover study. Pulm Pharmacol Ther. 2015;31:85–91. doi: 10.1016/j.pupt.2014.08.010.
    1. Usmani OS, Scichilone N, Mignot B, Belmans D, Van Holsbeke C, De Backer J, et al. Airway deposition of extrafine inhaled triple therapy in patients with COPD: a model approach based on functional respiratory imaging computer simulations. Int J Chron Obstruct Pulmon Dis. 2020;15:2433–2440. doi: 10.2147/COPD.S269001.
    1. Virchow JC, Poli G, Herpich C, Kietzig C, Ehlich H, Braeutigam D, et al. Lung deposition of the dry powder fixed combination beclometasone dipropionate plus formoterol fumarate using NEXThaler® device in healthy subjects, asthmatic patients, and COPD patients. J Aerosol Med Pulm Drug Deliv. 2018;31(5):269–280. doi: 10.1089/jamp.2016.1359.
    1. Martinez FJ, Rabe KF, Ferguson GT, Wedzicha JA, Singh D, Wang C, et al. Reduced all-cause mortality in the ETHOS trial of budesonide/glycopyrrolate/formoterol for chronic obstructive pulmonary disease. A randomized, double-blind, multicenter, parallel-group study. Am J Respir Crit Care Med. 2021;203(5):553–564. doi: 10.1164/rccm.202006-2618OC.
    1. Reddy RM, Guntupalli KK. Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2007;2(4):441–452.
    1. Esmailpour N, Högger P, Rohdewald P. Binding kinetics of budesonide to the human glucocorticoid receptor. Eur J Pharm Sci. 1998;6(3):219–223. doi: 10.1016/S0928-0987(97)00082-1.
    1. Barrette AM, Roberts JK, Chapin C, Egan EA, Segal MR, Oses-Prieto JA, et al. Antiinflammatory effects of budesonide in human fetal lung. Am J Respir Cell Mol Biol. 2016;55(5):623–632. doi: 10.1165/rcmb.2016-0068OC.
    1. Hakim A, Khan Y, Esteban I, Meah S, Miller-Larsson A, Barnes PJ, et al. Low-dose budesonide/formoterol counteracts airway inflammation and improves lung function in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2019;199(5):662–664. doi: 10.1164/rccm.201808-1590LE.
    1. Mokra D, Kosutova P, Balentova S, Adamkov M, Mikolka P, Mokry J, et al. Effects of budesonide on the lung functions, inflammation and apoptosis in a saline-lavage model of acute lung injury. J Physiol Pharmacol. 2016;67(6):919–932.
    1. Cooper PR, Kurten RC, Zhang J, Nicholls DJ, Dainty IA, Panettieri RA. Formoterol and salmeterol induce a similar degree of beta2-adrenoceptor tolerance in human small airways but via different mechanisms. Br J Pharmacol. 2011;163(3):521–532. doi: 10.1111/j.1476-5381.2011.01257.x.
    1. Usmani OS, Ito K, Maneechotesuwan K, Ito M, Johnson M, Barnes PJ, et al. Glucocorticoid receptor nuclear translocation in airway cells after inhaled combination therapy. Am J Respir Crit Care Med. 2005;172(6):704–712. doi: 10.1164/rccm.200408-1041OC.
    1. Battisti WP, Wager E, Baltzer L, Bridges D, Cairns A, Carswell CI, et al. Good publication practice for communicating company-sponsored medical research: GPP3. Ann Intern Med. 2015;163(6):461–464. doi: 10.7326/M15-0288.

Source: PubMed

3
S'abonner