Fluid overload in the ICU: evaluation and management

Rolando Claure-Del Granado, Ravindra L Mehta, Rolando Claure-Del Granado, Ravindra L Mehta

Abstract

Background: Fluid overload is frequently found in acute kidney injury patients in critical care units. Recent studies have shown the relationship of fluid overload with adverse outcomes; hence, manage and optimization of fluid balance becomes a central component of the management of critically ill patients.

Discussion: In critically ill patients, in order to restore cardiac output, systemic blood pressure and renal perfusion an adequate fluid resuscitation is essential. Achieving an appropriate level of volume management requires knowledge of the underlying pathophysiology, evaluation of volume status, and selection of appropriate solution for volume repletion, and maintenance and modulation of the tissue perfusion. Numerous recent studies have established a correlation between fluid overload and mortality in critically ill patients. Fluid overload recognition and assessment requires an accurate documentation of intakes and outputs; yet, there is a wide difference in how it is evaluated, reviewed and utilized. Accurate volume status evaluation is essential for appropriate therapy since errors of volume evaluation can result in either in lack of essential treatment or unnecessary fluid administration, and both scenarios are associated with increased mortality. There are several methods to evaluate fluid status; however, most of the tests currently used are fairly inaccurate. Diuretics, especially loop diuretics, remain a valid therapeutic alternative. Fluid overload refractory to medical therapy requires the application of extracorporeal therapies. In critically ill patients, fluid overload is related to increased mortality and also lead to several complications like pulmonary edema, cardiac failure, delayed wound healing, tissue breakdown, and impaired bowel function. Therefore, the evaluation of volume status is crucial in the early management of critically ill patients. Diuretics are frequently used as an initial therapy; however, due to their limited effectiveness the use of continuous renal replacement techniques are often required for fluid overload treatment. Successful fluid overload treatment depends on precise assessment of individual volume status, understanding the principles of fluid management with ultrafiltration, and clear treatment goals.

Keywords: Acute kidney injury; Continuous renal replacement therapies; Diuretics; Fluid overload.

Figures

Fig. 1
Fig. 1
Lung comet tail image. ‘B lines’ also known as comet-tail images are a marker of pulmonary edema. In the presence of extravascular lung water the reflection of the ultrasound beam on the sub-pleural interlobular septa thickened by edema creates comet-tail reverberation artifacts. The ultrasound appearance is of a vertical, discrete, hyperechogenic image that arises from the pleural line and extends to the bottom of the screen moving synchronously with the respiration (white arrows)
Fig. 2
Fig. 2
Circuit set up at University of California San Diego, Medical Center. The mean infusion rate of tri-sodium citrate was 180 ml/h and blood flow rate (Qb) was set at 100 ml/min. Tri-sodium citrate was added at the arterial catheter port with ionized calcium levels been measured post-filter. Post-filter ionized calcium levels were used to adjust tri-sodium citrate flow rates. Pre-filter BUN value was measured after the infusion of tri-sodium citrate and after pre-dilution replacement fluid (Qr), thus accounting for the pre-dilutional effect. A fixed ultrafiltration rate (Quf) was used (set at 1000 ml/h) for achieving fluid balance. A target effluent volume was adjusted by hourly modifying substitution fluid rate (Qs) to achieve a negative, zero, or positive fluid balance. Qb, blood flow rate; Qd, dialysate flow rate; Qr, replacement fluid rate; Quf, total ultrafiltration rate; Qnet, net fluid removal rate

References

    1. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7. doi: 10.1038/ki.2009.159.
    1. Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107(6):1309–12. doi: 10.1542/peds.107.6.1309.
    1. Goldstein SL, Somers MJ, Baum MA, Symons JM, Brophy PD, Blowey D, et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 2005;67(2):653–8. doi: 10.1111/j.1523-1755.2005.67121.x.
    1. Gillespie RS, Seidel K, Symons JM. Effect of fluid overload and dose of replacement fluid on survival in hemofiltration. Pediatr Nephrol. 2004;19(12):1394–9. doi: 10.1007/s00467-004-1655-1.
    1. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–75. doi: 10.1056/NEJMoa062200.
    1. Brandstrup B, Tonnesen H, Beier-Holgersen R, Hjortso E, Ording H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8. doi: 10.1097/01.sla.0000094387.50865.23.
    1. Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6(2):107–15. doi: 10.1038/nrneph.2009.213.
    1. Levy MM, Artigas A, Phillips GS, Rhodes A, Beale R, Osborn T, et al. Outcomes of the Surviving Sepsis Campaign in intensive care units in the USA and Europe: a prospective cohort study. Lancet Infect Dis. 2012;12(12):919–24. doi: 10.1016/S1473-3099(12)70239-6.
    1. Kellum JA, Lameire N. Kidney Disease Improving Global Outcomes (KDIGO) Working Group. Section 3: Prevention and Treatment of AKI. Kidney Int Suppl (2011). 2012;2(1):37–68.
    1. Mehta RL, Bouchard J. Controversies in acute kidney injury: effects of fluid overload on outcome. Contrib Nephrol. 2011;174:200–11. doi: 10.1159/000329410.
    1. Humphrey H, Hall J, Sznajder I, Silverstein M, Wood L. Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest. 1990;97(5):1176–80. doi: 10.1378/chest.97.5.1176.
    1. Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103(1):25–32. doi: 10.1097/00000542-200507000-00008.
    1. Boyle A, Maurer MS, Sobotka PA. Myocellular and interstitial edema and circulating volume expansion as a cause of morbidity and mortality in heart failure. J Card Fail. 2007;13(2):133–6. doi: 10.1016/j.cardfail.2006.10.015.
    1. Andreucci M, Federico S, Andreucci VE. Edema and acute renal failure. Semin Nephrol. 2001;21(3):251–6. doi: 10.1053/snep.2001.21652.
    1. Bouchard J, Mehta RL. Fluid balance issues in the critically ill patient. Contrib Nephrol. 2010;164:69–78. doi: 10.1159/000313722.
    1. Schrier RW, Wang W. Acute renal failure and sepsis. N Engl J Med. 2004;351(2):159–69. doi: 10.1056/NEJMra032401.
    1. Murphy CV, Schramm GE, Doherty JA, Reichley RM, Gajic O, Afessa B, et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009;136(1):102–9. doi: 10.1378/chest.08-2706.
    1. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65. doi: 10.1097/CCM.0b013e3181feeb15.
    1. Bagshaw SM, Cruz DN. Fluid overload as a biomarker of heart failure and acute kidney injury. Contrib Nephrol. 2010;164:54–68. doi: 10.1159/000313721.
    1. Wang CS, FitzGerald JM, Schulzer M, Mak E, Ayas NT. Does this dyspneic patient in the emergency department have congestive heart failure? JAMA. 2005;294(15):1944–56. doi: 10.1001/jama.294.15.1944.
    1. Butman SM, Ewy GA, Standen JR, Kern KB, Hahn E. Bedside cardiovascular examination in patients with severe chronic heart failure: importance of rest or inducible jugular venous distension. J Am Coll Cardiol. 1993;22(4):968–74. doi: 10.1016/0735-1097(93)90405-P.
    1. Marantz PR, Kaplan MC, Alderman MH. Clinical diagnosis of congestive heart failure in patients with acute dyspnea. Chest. 1990;97(4):776–81. doi: 10.1378/chest.97.4.776.
    1. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261(6):884–8. doi: 10.1001/jama.1989.03420060100040.
    1. Collins SP, Lindsell CJ, Storrow AB, Abraham WT. Prevalence of negative chest radiography results in the emergency department patient with decompensated heart failure. Ann Emerg Med. 2006;47(1):13–8. doi: 10.1016/j.annemergmed.2005.04.003.
    1. Chakko S, Woska D, Martinez H, de Marchena E, Futterman L, Kessler KM, et al. Clinical, radiographic, and hemodynamic correlations in chronic congestive heart failure: conflicting results may lead to inappropriate care. Am J Med. 1991;90(3):353–9. doi: 10.1016/0002-9343(91)80016-F.
    1. Peacock WF, Soto KM. Current techniques of fluid status assessment. Contrib Nephrol. 2010;164:128–42. doi: 10.1159/000313726.
    1. Ruskin JA, Gurney JW, Thorsen MK, Goodman LR. Detection of pleural effusions on supine chest radiographs. AJR Am J Roentgenol. 1987;148(4):681–3. doi: 10.2214/ajr.148.4.681.
    1. Chait A, Cohen HE, Meltzer LE, VanDurme JP. The bedside chest radiograph in the evaluation of incipient heart failure. Radiology. 1972;105(3):563–6. doi: 10.1148/105.3.563.
    1. Piccoli A. Patterns of bioelectrical impedance vector analysis: learning from electrocardiography and forgetting electric circuit models. Nutrition. 2002;18(6):520–1. doi: 10.1016/S0899-9007(02)00771-2.
    1. Piccoli A, Pittoni G, Facco E, Favaro E, Pillon L. Relationship between central venous pressure and bioimpedance vector analysis in critically ill patients. Crit Care Med. 2000;28(1):132–7. doi: 10.1097/00003246-200001000-00022.
    1. Piccoli A. Bioelectric impedance measurement for fluid status assessment. Contrib Nephrol. 2010;164:143–52. doi: 10.1159/000313727.
    1. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J Am Soc Echocardiogr. 2006;19(3):356–63. doi: 10.1016/j.echo.2005.05.019.
    1. Agricola E, Bove T, Oppizzi M, Marino G, Zangrillo A, Margonato A, et al. “Ultrasound comet-tail images”: a marker of pulmonary edema: a comparative study with wedge pressure and extravascular lung water. Chest. 2005;127(5):1690–5. doi: 10.1378/chest.127.5.1690.
    1. Lyon M, Blaivas M, Brannam L. Sonographic measurement of the inferior vena cava as a marker of blood loss. Am J Emerg Med. 2005;23(1):45–50. doi: 10.1016/j.ajem.2004.01.004.
    1. Zengin S, Al B, Genc S, Yildirim C, Ercan S, Dogan M, et al. Role of inferior vena cava and right ventricular diameter in assessment of volume status: a comparative study: ultrasound and hypovolemia. Am J Emerg Med. 2013;31(5):763–7. doi: 10.1016/j.ajem.2012.10.013.
    1. Perazella MA, Coca SG. Three feasible strategies to minimize kidney injury in ‘incipient AKI’. Nat Rev Nephrol. 2013;9(8):484–90. doi: 10.1038/nrneph.2013.80.
    1. Mehta RL, Pascual MT, Soroko S, Chertow GM. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–53. doi: 10.1001/jama.288.20.2547.
    1. Uchino S, Doig GS, Bellomo R, Morimatsu H, Morgera S, Schetz M, et al. Diuretics and mortality in acute renal failure. Crit Care Med. 2004;32(8):1669–77. doi: 10.1097/01.CCM.0000132892.51063.2F.
    1. Cantarovich F, Rangoonwala B, Lorenz H, Verho M, Esnault VL. High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am J Kidney Dis. 2004;44(3):402–9. doi: 10.1016/S0272-6386(04)00810-8.
    1. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966–73. doi: 10.2215/CJN.08781010.
    1. Bellomo R, Prowle JR, Echeverri JE. Diuretic therapy in fluid-overloaded and heart failure patients. Contrib Nephrol. 2010;164:153–63. doi: 10.1159/000313728.
    1. Martin SJ, Danziger LH. Continuous infusion of loop diuretics in the critically ill: a review of the literature. Crit Care Med. 1994;22(8):1323–9. doi: 10.1097/00003246-199408000-00017.
    1. Shah RV, McNulty S, O’Connor CM, Felker GM, Braunwald E, Givertz MM. Effect of admission oral diuretic dose on response to continuous versus bolus intravenous diuretics in acute heart failure: an analysis from diuretic optimization strategies in acute heart failure. Am Heart J. 2012;164(6):862–8. doi: 10.1016/j.ahj.2012.08.019.
    1. Wargo KA, Banta WM. A comprehensive review of the loop diuretics: should furosemide be first line? Ann Pharmacother. 2009;43(11):1836–47. doi: 10.1345/aph.1M177.
    1. Brater DC. Resistance to diuretics: emphasis on a pharmacological perspective. Drugs. 1981;22(6):477–94. doi: 10.2165/00003495-198122060-00004.
    1. De Vecchis R, Ciccarelli A, Cioppa C. Intermittent intravenous infusion of high-dose loop diuretics and risk for iatrogenic ototoxicity: an unresolved issue from the DOSE study. G Ital Cardiol (Rome) 2012;13(10):701–2.
    1. Kellum JA, Lameire N. Kidney Disease Improving Global Outcomes (KDIGO) Working Group.Section 5: Dialysis Interventions for Treatment of AKI. Kidney Int Suppl (2011). 2012;2(1):89–115.
    1. Bell M, SWING. Granath F, Schon S, Ekbom A, Martling CR. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 2007;33(5):773–80. doi: 10.1007/s00134-007-0590-6.
    1. Jacka MJ, Ivancinova X, Gibney RT. Continuous renal replacement therapy improves renal recovery from acute renal failure. Can J Anaesth. 2005;52(3):327–32. doi: 10.1007/BF03016071.
    1. Uchino S, Bellomo R, Kellum JA, Morimatsu H, Morgera S, Schetz MR, et al. Patient and kidney survival by dialysis modality in critically ill patients with acute kidney injury. Int J Artif Organs. 2007;30(4):281–92.
    1. Cerda J, Ronco C. Modalities of continuous renal replacement therapy: technical and clinical considerations. Semin Dial. 2009;22(2):114–22. doi: 10.1111/j.1525-139X.2008.00549.x.
    1. Bouchard J, Mehta RL. Volume management in continuous renal replacement therapy. Semin Dial. 2009;22(2):146–50. doi: 10.1111/j.1525-139X.2009.00561.x.
    1. Costanzo MR, Negoianu D, Jaski BE, Bart BA, Heywood JT, Anand IS, et al. Aquapheresis Versus Intravenous Diuretics and Hospitalizations for Heart Failure. JACC Heart Fail. 2016;4(2):95–105. doi: 10.1016/j.jchf.2015.08.005.

Source: PubMed

3
S'abonner