A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

David G Ashbrook, Robert W Williams, Lu Lu, Reinmar Hager, David G Ashbrook, Robert W Williams, Lu Lu, Reinmar Hager

Abstract

Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum.

Keywords: CMYA5; MCTP1; RXRG; TNR; anxiety; bipolar disorder; cross-species.

Figures

Figure 1
Figure 1
Bipolar disorder traits and analogous mouse phenotypes. On the left, symptoms of the manic and depressive phases of bipolar disorder are shown, as well as behaviors which have been demonstrated to be disrupted in bipolar disorder patients. On the right are mouse phenotypes which are measured by the zero maze and open field test, showing how the human traits link to the mouse traits.
Figure 2
Figure 2
Graphical representation of the research method used, providing a summary of the main findings.
Figure 3
Figure 3
Example QTL maps showing two significant QTL within each of the regions we identified. (A) Chromosome 1, between 155 and 175 Mbp, elevated zero maze traits (GeneNetwork ID 12419, 12361 and 12409; full details in Table 1). (B) Chromosome 13, between 70 and 100 Mbp, open field test traits 11606, 11759, 11607 (Full details in Table 2). This clearly shows that some traits have two peaks, with a non-significant region between, while other traits have significant peaks only at one end or the other of the identified regions. The higher red line indicates the level of genome-wide significance, i.e., a genome-wide corrected p ≤ 0.05, with the blue line showing the significance of the trait at each position. The lower red line indicates the negative additive coefficient, i.e., that C57BL/6J alleles increase trait values, with the scale in green on the left. The colored blocks at the top of the figure show the positions of genes. The orange track at the bottom of each map is the SNP Seismograph track, showing the positions of SNPs within the BXD lines. The location of our four candidate genes are shown, with the width of the line representing the size of the gene.

References

    1. Ackert-Bicknell C. L., Karasik D., Li Q., Smith R. V., Hsu Y.-H., Churchill G. A., et al. . (2010). Mouse BMD quantitative trait loci show improved concordance with human genome-wide association loci when recalculated on a new, common mouse genetic map. J. Bone Miner. Res. 25, 1808–1820. 10.1002/jbmr.72
    1. Alliey-Rodriguez N., Zhang D., Badner J. A., Lahey B. B., Zhang X., Dinwiddie S., et al. . (2011). Genome-wide association study of personality traits in bipolar patients. Psychiatr. Genet. 21, 190–194. 10.1097/YPG.0b013e3283457a31
    1. Allocco D. J., Kohane I. S., Butte A. J. (2004). Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinformatics 5:18. 10.1186/1471-2105-5-18
    1. Alpár A., Gärtner U., Härtig W., Brückner G. (2006). Distribution of pyramidal cells associated with perineuronal nets in the neocortex of rat. Brain Res. 1120, 13–22. 10.1016/j.brainres.2006.08.069
    1. Andreux P. A., Williams E. G., Koutnikova H., Houtkooper R. H., Champy M.-F., Henry H., et al. . (2012). Systems genetics of metabolism: the use of the BXD murine reference panel for multiscalar integration of traits. Cell 150, 1287–1299. 10.1016/j.cell.2012.08.012
    1. Ariyannur P. S., Arun P., Barry E. S., Andrews-Shigaki B., Bosomtwi A., Tang H., et al. . (2013). Do reductions in brain N-acetylaspartate levels contribute to the etiology of some neuropsychiatric disorders? J. Neurosci. Res. 91, 934–942. 10.1002/jnr.23234
    1. Ashbrook D. G., Hager R. (2013). Empirical testing of hypotheses about the evolution of genomic imprinting in mammals. Front. Neuroanat. 7:6. 10.3389/fnana.2013.00006
    1. Ashbrook D. G., Williams R. W., Lu L., Stein J. L., Hibar D. P., Nichols T. E., et al. . (2014). Joint genetic analysis of hippocampal size in mouse and human identifies a novel gene linked to neurodegenerative disease. BMC Genomics 15:850. 10.1186/1471-2164-15-850
    1. Balleine B. W., O'Doherty J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology 35, 48–69. 10.1038/npp.2009.131
    1. Barrett T., Wilhite S. E., Ledoux P., Evangelista C., Kim I. F., Tomashevsky M., et al. . (2013). NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 41, D991–D995. 10.1093/nar/gks1193
    1. Bartra O., McGuire J. T., Kable J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427. 10.1016/j.neuroimage.2013.02.063
    1. Bateson M., Brilot B., Nettle D. (2011). Anxiety: an evolutionary approach. Can. J. Psychiatry 56, 707–715.
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300. 10.2307/2346101
    1. Benson M. A., Tinsley C. L., Blake D. J. (2004). Myospryn is a novel binding partner for dysbindin in muscle. J. Biol. Chem. 279, 10450–10458. 10.1074/jbc.M312664200
    1. Berridge M. J. (2013). Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 7, 2–13. 10.4161/pri.21767
    1. Berridge M. J. (2014). Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res. 357, 477–492. 10.1007/s00441-014-1806-z
    1. Bitanihirwe B. K. Y., Woo T.-U. W. (2014). Perineuronal nets and schizophrenia: the importance of neuronal coatings. Neurosci. Biobehav. Rev. 45C, 85–99. 10.1016/j.neubiorev.2014.03.018
    1. Boylan K. R., Bieling P. J., Marriott M., Begin H., Young L. T., MacQueen G. M. (2004). Impact of comorbid anxiety disorders on outcome in a cohort of patients with bipolar disorder. J. Clin. Psychiatry 65, 1106–1113. 10.4088/JCP.v65n0813
    1. Breen G., Prata D., Osborne S., Munro J., Sinclair M., Li T., et al. . (2006). Association of the dysbindin gene with bipolar affective disorder. Am. J. Psychiatry 163, 1636–1638. 10.1176/appi.ajp.163.9.1636
    1. Brückner G., Grosche J., Schmidt S., Härtig W., Margolis R. U., Delpech B., et al. . (2000). Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R. J. Comp. Neurol. 428, 616–629. 10.1002/1096-9861(20001225)428:4<616::AID-CNE3>;2-K
    1. Brückner G., Szeöke S., Pavlica S., Grosche J., Kacza J. (2006). Axon initial segment ensheathed by extracellular matrix in perineuronal nets. Neuroscience 138, 365–375. 10.1016/j.neuroscience.2005.11.068
    1. Cardno A. G., Owen M. J. (2014). Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder. Schizophr. Bull. 40, 504–515. 10.1093/schbul/sbu016
    1. Chauhan A. K., Moretti F. A., Iaconcig A., Baralle F. E., Muro A. F. (2005). Impaired motor coordination in mice lacking the EDA exon of the fibronectin gene. Behav. Brain Res. 161, 31–38. 10.1016/j.bbr.2005.02.020
    1. Chesler E. J., Lu L., Shou S., Qu Y., Gu J., Wang J., et al. . (2005). Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat. Genet. 37, 233–242. 10.1038/ng1518
    1. Chesler E. J., Wang J., Lu L., Qu Y., Manly K. F., Williams R. W. (2003). Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. Neuroinformatics 1, 343–357. 10.1385/NI:1:4:343
    1. Coryell W., Solomon D. A., Fiedorowicz J. G., Endicott J., Schettler P. J., Judd L. L. (2009). Anxiety and outcome in bipolar disorder. Am. J. Psychiatry 166, 1238–1243. 10.1176/appi.ajp.2009.09020218
    1. Craddock N., O'Donovan M. C., Owen M. J. (2006). Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology. Schizophr. Bull. 32, 9–16. 10.1093/schbul/sbj033
    1. Cropley V. L., Fujita M., Innis R. B., Nathan P. J. (2006). Molecular imaging of the dopaminergic system and its association with human cognitive function. Biol. Psychiatry 59, 898–907. 10.1016/j.biopsych.2006.03.004
    1. Dalley J. W., Fryer T. D., Brichard L., Robinson E. S. J., Theobald D. E. H., Lääne K., et al. . (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315, 1267–1270. 10.1126/science.1137073
    1. De Mooij-van Malsen A. J. G., van Lith H. A., Oppelaar H., Hendriks J., de Wit M., Kostrzewa E., et al. . (2009). Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder. Biol. Psychiatry 66, 1123–1130. 10.1016/j.biopsych.2009.06.016
    1. Doherty J. L., Owen M. J. (2014). Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome Med. 6, 29. 10.1186/gm546
    1. Eagle D. M., Wong J. C. K., Allan M. E., Mar A. C., Theobald D. E., Robbins T. W. (2011). Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J. Neurosci. 31, 7349–7356. 10.1523/JNEUROSCI.6182-10.2011
    1. Edvardsen J., Torgersen S., Røysamb E., Lygren S., Skre I., Onstad S., et al. . (2008). Heritability of bipolar spectrum disorders. Unity or heterogeneity? J. Affect. Disord. 106, 229–240. 10.1016/j.jad.2007.07.001
    1. Eisener-Dorman A. F., Grabowski-Boase L., Steffy B. M., Wiltshire T., Tarantino L. M. (2010). Quantitative trait locus and haplotype mapping in closely related inbred strains identifies a locus for open field behavior. Mamm. Genome 21, 231–246. 10.1007/s00335-010-9260-z
    1. Erhardt A., Spoormaker V. I. (2013). Translational approaches to anxiety: focus on genetics, fear extinction and brain imaging. Curr. Psychiatry Rep. 15, 417. 10.1007/s11920-013-0417-9
    1. Ferreira M. A. R., O'Donovan M. C., Meng Y. A., Jones I. R., Ruderfer D. M., Jones L., et al. . (2008). Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40, 1056–1058. 10.1038/ng.209
    1. Flint J., Corley R., DeFries J., Fulker D., Gray J., Miller S., et al. . (1995). A simple genetic basis for a complex psychological trait in laboratory mice. Science 269, 1432–1435. 10.1126/science.7660127
    1. Flint J., Valdar W., Shifman S., Mott R. (2005). Strategies for mapping and cloning quantitative trait genes in rodents. Nat. Rev. Genet. 6, 271–286. 10.1038/nrg1576
    1. Freeman M. P., Freeman S. A., McElroy S. L. (2002). The comorbidity of bipolar and anxiety disorders: prevalence, psychobiology, and treatment issues. J. Affect. Disord. 68, 1–23. 10.1016/S0165-0327(00)00299-8
    1. Freitag S., Schachner M., Morellini F. (2003). Behavioral alterations in mice deficient for the extracellular matrix glycoprotein tenascin-R. Behav. Brain Res. 145, 189–207. 10.1016/S0166-4328(03)00109-8
    1. Fuss B., Wintergerst E. S., Bartsch U., Schachner M. (1993). Molecular characterization and in situ mRNA localization of the neural recognition molecule J1-160/180: a modular structure similar to tenascin. J. Cell Biol. 120, 1237–1249. 10.1083/jcb.120.5.1237
    1. Gershenfeld H. K., Neumann P. E., Mathis C., Crawley J. N., Li X., Paul S. M. (1997). Mapping quantitative trait loci for open-field behavior in mice. Behav. Genet. 27, 201–210. 10.1023/A:1025653812535
    1. Gini B., Hager R. (2012). Recombinant inbred systems can advance research in behavioral ecology. Front. Genet. 3:198. 10.3389/fgene.2012.00198
    1. Goldstein B. I., Levitt A. J. (2008). The specific burden of comorbid anxiety disorders and of substance use disorders in bipolar I disorder. Bipolar Disord. 10, 67–78. 10.1111/j.1399-5618.2008.00461.x
    1. Goodwin F. K., Jamison K. R. (1990). Manic-Depressive Illness. 1st Edn New York, NY: Oxford University Press.
    1. Goodwin G., Sachs G. (2010). Fast Facts: Bipolar Disorder. 2nd Edn Abingdon: Health Press Limited.
    1. Gould T. J., Keith R. A., Bhat R. V. (2001). Differential sensitivity to lithium's reversal of amphetamine-induced open-field activity in two inbred strains of mice. Behav. Brain Res. 118, 95–105. 10.1016/S0166-4328(00)00318-1
    1. Gratten J., Wray N. R., Keller M. C., Visscher P. M. (2014). Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat. Neurosci. 17, 782–790. 10.1038/nn.3708
    1. Hager R., Lu L., Rosen G. D., Williams R. W. (2012). Genetic architecture supports mosaic brain evolution and independent brain-body size regulation. Nat. Commun. 3, 1079. 10.1038/ncomms2086
    1. Hamidovic A., Dlugos A., Skol A., Palmer A. A., de Wit H. (2009). Evaluation of genetic variability in the dopamine receptor D2 in relation to behavioral inhibition and impulsivity/sensation seeking: an exploratory study with d-amphetamine in healthy participants. Exp. Clin. Psychopharmacol. 17, 374–383. 10.1037/a0017840
    1. Hargus G., Cui Y., Schmid J.-S., Xu J., Glatzel M., Schachner M., et al. . (2008). Tenascin-R promotes neuronal differentiation of embryonic stem cells and recruitment of host-derived neural precursor cells after excitotoxic lesion of the mouse striatum. Stem Cells 26, 1973–1984. 10.1634/stemcells.2007-0929
    1. Haunsø A., Ibrahim M., Bartsch U., Letiembre M., Celio M. R., Menoud P. (2000). Morphology of perineuronal nets in tenascin-R and parvalbumin single and double knockout mice. Brain Res. 864, 142–145. 10.1016/S0006-8993(00)02173-9
    1. Hayes K. S., Hager R., Grencis R. K. (2014). Sex-dependent genetic effects on immune responses to a parasitic nematode. BMC Genomics 15:193. 10.1186/1471-2164-15-193
    1. Henry B. L., Minassian A., Young J. W., Paulus M. P., Geyer M. A., Perry W. (2010). Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci. Biobehav. Rev. 34, 1296–1306. 10.1016/j.neubiorev.2010.04.002
    1. Johnson S. L. (2005). Mania and dysregulation in goal pursuit: a review. Clin. Psychol. Rev. 25, 241–262. 10.1016/j.cpr.2004.11.002
    1. Joo E. J., Lee K. Y., Jeong S. H., Chang J. S., Ahn Y. M., Koo Y. J., et al. . (2007). Dysbindin gene variants are associated with bipolar I disorder in a Korean population. Neurosci. Lett. 418, 272–275. 10.1016/j.neulet.2007.03.037
    1. Judd L. L., Akiskal H. S. (2003). The prevalence and disability of bipolar spectrum disorders in the US population: re-analysis of the ECA database taking into account subthreshold cases. J. Affect. Disord. 73, 123–131. 10.1016/S0165-0327(02)00332-4
    1. Kalueff A. V., Keisala T., Minasyan A., Kuuslahti M., Tuohimaa P. (2006). Temporal stability of novelty exploration in mice exposed to different open field tests. Behav. Processes 72, 104–112. 10.1016/j.beproc.2005.12.011
    1. Kas M. J. H., Fernandes C., Schalkwyk L. C., Collier D. A. (2007). Genetics of behavioural domains across the neuropsychiatric spectrum; of mice and men. Mol. Psychiatry 12, 324–330. 10.1038/sj.mp.4001979
    1. Kirshenbaum G. S., Clapcote S. J., Duffy S., Burgess C. R., Petersen J., Jarowek K. J., et al. . (2011). Mania-like behavior induced by genetic dysfunction of the neuron-specific Na+,K+-ATPase 3 sodium pump. Proc. Natl. Acad. Sci. U.S.A. 108, 18144–18149. 10.1073/pnas.1108416108
    1. Koutnikova H., Laakso M., Lu L., Combe R., Paananen J., Kuulasmaa T., et al. . (2009). Identification of the UBP1 locus as a critical blood pressure determinant using a combination of mouse and human genetics. PLoS Genet. 5:e1000591. 10.1371/journal.pgen.1000591
    1. Krezel W., Ghyselinck N., Samad T. A., Dupé V., Kastner P., Borrelli E., et al. . (1998). Impaired locomotion and dopamine signaling in retinoid receptor mutant mice. Science 279, 863–867. 10.1126/science.279.5352.863
    1. Krzyzosiak A., Szyszka-Niagolov M., Wietrzych M., Gobaille S., Muramatsu S., Krezel W. (2010). Retinoid x receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron 66, 908–920. 10.1016/j.neuron.2010.05.004
    1. Lavedan C., Licamele L., Volpi S., Hamilton J., Heaton C., Mack K., et al. . (2009). Association of the NPAS3 gene and five other loci with response to the antipsychotic iloperidone identified in a whole genome association study. Mol. Psychiatry 14, 804–819. 10.1038/mp.2008.56
    1. Lawrence A. D., Weeks R. A., Brooks D. J., Andrews T. C., Watkins L. H., Harding A. E., et al. . (1998). The relationship between striatal dopamine receptor binding and cognitive performance in Huntington's disease. Brain 121 (Pt 7), 1343–1355. 10.1093/brain/121.7.1343
    1. Leduc M. S., Lyons M., Darvishi K., Walsh K., Sheehan S., Amend S., et al. . (2011). The mouse QTL map helps interpret human genome-wide association studies for HDL cholesterol. J. Lipid Res. 52, 1139–1149. 10.1194/jlr.M009175
    1. Lee H., Leamey C. A., Sawatari A. (2012). Perineuronal nets play a role in regulating striatal function in the mouse. PLoS ONE 7:e32747. 10.1371/journal.pone.0032747
    1. Lee S. H., Ripke S., Neale B. M., Faraone S. V., Purcell S. M., Perlis R. H., et al. . (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994. 10.1038/ng.2711
    1. Legare M. E., Bartlett F. S., Frankel W. N. (2000). A major effect QTL determined by multiple genes in epileptic EL mice. Genome Res. 10, 42–48. 10.1101/gr.10.1.42
    1. Lein E. S., Hawrylycz M. J., Ao N., Ayres M., Bensinger A., Bernard A., et al. . (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176. 10.1038/nature05453
    1. Le-Niculescu H., McFarland M. J., Ogden C. A., Balaraman Y., Patel S., Tan J., et al. . (2008). Phenomic, convergent functional genomic, and biomarker studies in a stress-reactive genetic animal model of bipolar disorder and co-morbid alcoholism. Am. J. Med. Genet. B Neuropsychiatr. Genet. 147B, 134–166. 10.1002/ajmg.b.30707
    1. Le-Niculescu H., Patel S. D., Bhat M., Kuczenski R., Faraone S. V., Tsuang M. T., et al. . (2009). Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am. J. Med. Genet. B Neuropsychiatr. Genet. 150B, 155–181. 10.1002/ajmg.b.30887
    1. Li M.-X., Gui H.-S., Kwan J. S. H., Sham P. C. (2011). GATES: a rapid and powerful gene-based association test using extended Simes procedure. Am. J. Hum. Genet. 88, 283–293. 10.1016/j.ajhg.2011.01.019
    1. Li M.-X., Kwan J. S. H., Sham P. C. (2012). HYST: a hybrid set-based test for genome-wide association studies, with application to protein-protein interaction-based association analysis. Am. J. Hum. Genet. 91, 478–488. 10.1016/j.ajhg.2012.08.004
    1. Li M.-X., Sham P. C., Cherny S. S., Song Y.-Q. (2010). A knowledge-based weighting framework to boost the power of genome-wide association studies. PLoS ONE 5:e14480. 10.1371/journal.pone.0014480
    1. Lichtenstein P., Yip B. H., Björk C., Pawitan Y., Cannon T. D., Sullivan P. F., et al. . (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234–239. 10.1016/S0140-6736(09)60072-6
    1. Mackay T. F. C., Stone E. A., Ayroles J. F. (2009). The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577. 10.1038/nrg2612
    1. MacKinnon D. F. (2002). Comorbid bipolar disorder and panic disorder in families with a high prevalence of bipolar disorder. Am. J. Psychiatry 159, 30–35. 10.1176/appi.ajp.159.1.30
    1. Marks I. fM., Nesse R. M. (1994). Fear and fitness: an evolutionary analysis of anxiety disorders. Ethol. Sociobiol. 15, 247–261. 10.1016/0162-3095(94)90002-7
    1. Mason L., O'Sullivan N., Montaldi D., Bentall R. P., El-Deredy W. (2014). Decision-making and trait impulsivity in bipolar disorder are associated with reduced prefrontal regulation of striatal reward valuation. Brain 137, 2346–2355. 10.1093/brain/awu152
    1. McGinty J. F. (1999). Regulation of neurotransmitter interactions in the ventral striatum. Ann. N.Y. Acad. Sci. 877, 129–139. 10.1111/j.1749-6632.1999.tb09265.x
    1. McGuffin P., Rijsdijk F., Andrew M., Sham P., Katz R., Cardno A. (2003). The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch. Gen. Psychiatry 60, 497–502. 10.1001/archpsyc.60.5.497
    1. Merikangas K. R., Akiskal H. S., Angst J., Greenberg P. E., Hirschfeld R. M. A., Petukhova M., et al. . (2007). Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch. Gen. Psychiatry 64, 543–552. 10.1001/archpsyc.64.5.543
    1. Miller J. A., Ding S.-L., Sunkin S. M., Smith K. A., Ng L., Szafer A., et al. . (2014). Transcriptional landscape of the prenatal human brain. Nature 508, 199–206. 10.1038/nature13185
    1. Minassian A., Henry B. L., Young J. W., Masten V., Geyer M. A., Perry W. (2011). Repeated assessment of exploration and novelty seeking in the human behavioral pattern monitor in bipolar disorder patients and healthy individuals. PLoS ONE 6:e24185. 10.1371/journal.pone.0024185
    1. Montag-Sallaz M., Montag D. (2003). Severe cognitive and motor coordination deficits in tenascin-R-deficient mice. Genes. Brain. Behav. 2, 20–31. 10.1034/j.1601-183X.2003.00003.x
    1. Moskvina V., O'Dushlaine C., Purcell S., Craddock N., Holmans P., O'Donovan M. C. (2011). Evaluation of an approximation method for assessment of overall significance of multiple-dependent tests in a genomewide association study. Genet. Epidemiol. 35, 861–866. 10.1002/gepi.20636
    1. Mozhui K., Ciobanu D. C., Schikorski T., Wang X., Lu L., Williams R. W. (2008). Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet. 4:e1000260. 10.1371/journal.pgen.1000260
    1. Mozhui K., Wang X., Chen J., Mulligan M. K., Li Z., Ingles J., et al. . (2011). Genetic regulation of Nrxn1 expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl. Psychiatry 1:e25. 10.1038/tp.2011.24
    1. Mühleisen T. W., Leber M., Schulze T. G., Strohmaier J., Degenhardt F., Treutlein J., et al. . (2014). Genome-wide association study reveals two new risk loci for bipolar disorder. Nat. Commun. 5, 3339. 10.1038/ncomms4339
    1. Nurnberger J. I., Koller D. L., Jung J., Edenberg H. J., Foroud T., Guella I., et al. . (2014). Identification of pathways for bipolar disorder: a meta-analysis. JAMA psychiatry 71, 657–664. 10.1001/jamapsychiatry.2014.176
    1. Ojima H., Kuroda M., Ohyama J., Kishi K. (1995). Two classes of cortical neurones labelled with Vicia villosa lectin in the guinea-pig. Neuroreport 6, 617–620. 10.1097/00001756-199503000-00008
    1. Owen M. J., Craddock N., Jablensky A. (2007). The genetic deconstruction of psychosis. Schizophr. Bull. 33, 905–911. 10.1093/schbul/sbm053
    1. Pae C.-U., Serretti A., Mandelli L., Yu H.-S., Patkar A. A., Lee C.-U., et al. . (2007). Effect of 5-haplotype of dysbindin gene (DTNBP1) polymorphisms for the susceptibility to bipolar I disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B, 701–703. 10.1002/ajmg.b.30439
    1. Pattij T., Janssen M. C. W., Vanderschuren L. J. M. J., Schoffelmeer A. N. M., van Gaalen M. M. (2007). Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology (Berl). 191, 587–598. 10.1007/s00213-006-0533-x
    1. Pearlson G. D., Ford J. M. (2014). Distinguishing between schizophrenia and other psychotic disorders. Schizophr. Bull. 40, 501–503. 10.1093/schbul/sbu055
    1. Perry W., Minassian A., Paulus M. P., Young J. W., Kincaid M. J., Ferguson E. J., et al. . (2009). A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch. Gen. Psychiatry 66, 1072–1080. 10.1001/archgenpsychiatry.2009.58
    1. Philip V. M., Duvvuru S., Gomero B., Ansah T. A., Blaha C. D., Cook M. N., et al. . (2010). High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes. Brain. Behav. 9, 129–159. 10.1111/j.1601-183X.2009.00540.x
    1. Ponder C. A., Kliethermes C. L., Drew M. R., Muller J., Das K., Risbrough V. B., et al. . (2007). Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression. Genes. Brain. Behav. 6, 736–749. 10.1111/j.1601-183X.2007.00306.x
    1. Poot M., Badea A., Williams R. W., Kas M. J. (2011). Identifying human disease genes through cross-species gene mapping of evolutionary conserved processes. PLoS ONE 6:e18612. 10.1371/journal.pone.0018612
    1. Psychiatric GWAS Consortium Bipolar Disorder Working Group. (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983. 10.1038/ng.943
    1. Purcell S. M., Wray N. R., Stone J. L., Visscher P. M., O'Donovan M. C., Sullivan P. F., et al. . (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752. 10.1038/nature08185
    1. Ruderfer D. M., Fanous A. H., Ripke S., McQuillin A., Amdur R. L., Gejman P. V., et al. . (2014). Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol. Psychiatry 19, 1017–1024. 10.1038/mp.2013.138
    1. Saga Y., Kobayashi M., Ohta H., Murai N., Nakai N., Oshima M., et al. . (1999). Impaired extrapyramidal function caused by the targeted disruption of retinoid X receptor RXRgamma1 isoform. Genes Cells 4, 219–228. 10.1046/j.1365-2443.1999.00253.x
    1. Samad T. A., Krezel W., Chambon P., Borrelli E. (1997). Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc. Natl. Acad. Sci. U.S.A. 94, 14349–14354. 10.1073/pnas.94.26.14349
    1. Schofield P. N., Hoehndorf R., Gkoutos G. V. (2012). Mouse genetic and phenotypic resources for human genetics. Hum. Mutat. 33, 826–836. 10.1002/humu.22077
    1. Scott L. J., Muglia P., Kong X. Q., Guan W., Flickinger M., Upmanyu R., et al. . (2009). Genome-wide association and meta-analysis of bipolar disorder in individuals of European ancestry. Proc. Natl. Acad. Sci. U.S.A. 106, 7501–7506. 10.1073/pnas.0813386106
    1. Shepherd J. K., Grewal S. S., Fletcher A., Bill D. J., Dourish C. T. (1994). Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl). 116, 56–64. 10.1007/BF02244871
    1. Shin O.-H., Han W., Wang Y., Südhof T. C. (2005). Evolutionarily conserved multiple C2 domain proteins with two transmembrane regions (MCTPs) and unusual Ca2+ binding properties. J. Biol. Chem. 280, 1641–1651. 10.1074/jbc.M407305200
    1. Simon N. M., Otto M. W., Wisniewski S. R., Fossey M., Sagduyu K., Frank E., et al. . (2004). Anxiety disorder comorbidity in bipolar disorder patients: data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). Am. J. Psychiatry 161, 2222–2229. 10.1176/appi.ajp.161.12.2222
    1. Singer J. B., Hill A. E., Nadeau J. H., Lander E. S. (2005). Mapping quantitative trait loci for anxiety in chromosome substitution strains of mice. Genetics 169, 855–862. 10.1534/genetics.104.031492
    1. Surmeier D. J., Ding J., Day M., Wang Z., Shen W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235. 10.1016/j.tins.2007.03.008
    1. Szczepankiewicz A. (2013). Evidence for single nucleotide polymorphisms and their association with bipolar disorder. Neuropsychiatr. Dis. Treat. 9, 1573–1582. 10.2147/NDT.S28117
    1. Talbot C. J., Radcliffe R. A., Fullerton J., Hitzemann R., Wehner J. M., Flint J. (2003). Fine scale mapping of a genetic locus for conditioned fear. Mamm. Genome 14, 223–230. 10.1007/s00335-002-3059-5
    1. Turri M. G., Datta S. R., DeFries J., Henderson N. D., Flint J. (2001a). QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr. Biol. 11, 725–734. 10.1016/S0960-9822(01)00206-8
    1. Turri M. G., Henderson N. D., DeFries J. C., Flint J. (2001b). Quantitative trait locus mapping in laboratory mice derived from a replicated selection experiment for open-field activity. Genetics 158, 1217–1226. Available online at:
    1. Valdar W., Solberg L. C., Gauguier D., Burnett S., Klenerman P., Cookson W. O., et al. . (2006). Genome-wide genetic association of complex traits in heterogeneous stock mice. Nat. Genet. 38, 879–887. 10.1038/ng1840
    1. Van Dam S., Cordeiro R., Craig T., van Dam J., Wood S. H., de Magalhães J. P. (2012). GeneFriends: an online co-expression analysis tool to identify novel gene targets for aging and complex diseases. BMC Genomics 13:535. 10.1186/1471-2164-13-535
    1. Vázquez G. H., Baldessarini R. J., Tondo L. (2014). Co-occurrence of anxiety and bipolar disorders: clinical and therapeutic overview. Depress. Anxiety 31, 196–206. 10.1002/da.22248
    1. Vogel H., Montag D., Kanzleiter T., Jonas W., Matzke D., Scherneck S., et al. . (2013). An interval of the obesity QTL Nob3.38 within a QTL hotspot on chromosome 1 modulates behavioral phenotypes. PLoS ONE 8:e53025. 10.1371/journal.pone.0053025
    1. Wang J., Duncan D., Shi Z., Zhang B. (2013). WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 41, W77–W83. 10.1093/nar/gkt439
    1. Wang J., Williams R. W., Manly K. F. (2003). WebQTL: web-based complex trait analysis. Neuroinformatics 1, 299–308. 10.1385/NI:1:4:299
    1. Wang Q., He K., Li Z., Chen J., Li W., Wen Z., et al. . (2014). The CMYA5 gene confers risk for both schizophrenia and major depressive disorder in the Han Chinese population. World J. Biol. Psychiatry 15, 553–560. 10.3109/15622975.2014.915057
    1. Watanabe Y., Shibuya M., Someya T. (2014). The cardiomyopathy-associated 5 (CMYA5) gene and risk of schizophrenia: meta-analysis of rs3828611 and rs4704591 in East Asian populations. Asian J. Psychiatr. 7, 95–96. 10.1016/j.ajp.2013.10.013
    1. Wehner J. M., Radcliffe R. A., Rosmann S. T., Christensen S. C., Rasmussen D. L., Fulker D. W., et al. . (1997). Quantitative trait locus analysis of contextual fear conditioning in mice. Nat. Genet. 17, 331–334. 10.1038/ng1197-331
    1. Wray N. R., Gottesman I. I. (2012). Using summary data from the danish national registers to estimate heritabilities for schizophrenia, bipolar disorder, and major depressive disorder. Front. Genet. 3:118. 10.3389/fgene.2012.00118
    1. Wu Y., Williams E. G., Dubuis S., Mottis A., Jovaisaite V., Houten S. M., et al. . (2014). Multilayered genetic and omics dissection of mitochondrial activity in a mouse reference population. Cell 158, 1415–1430. 10.1016/j.cell.2014.07.039
    1. Yalcin B., Willis-Owen S. A. G., Fullerton J., Meesaq A., Deacon R. M., Rawlins J. N. P., et al. . (2004). Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nat. Genet. 36, 1197–1202. 10.1038/ng1450
    1. Young J. W., Minassian A., Paulus M. P., Geyer M. A., Perry W. (2007). A reverse-translational approach to bipolar disorder: rodent and human studies in the Behavioral Pattern Monitor. Neurosci. Biobehav. Rev. 31, 882–896. 10.1016/j.neubiorev.2007.05.009
    1. Zhang B., Kirov S., Snoddy J. (2005). WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748. 10.1093/nar/gki475

Source: PubMed

3
S'abonner