Matching Clinical Diagnosis and Amyloid Biomarkers in Alzheimer's Disease and Frontotemporal Dementia

Giulia Giacomucci, Salvatore Mazzeo, Silvia Bagnoli, Matteo Casini, Sonia Padiglioni, Cristina Polito, Valentina Berti, Juri Balestrini, Camilla Ferrari, Gemma Lombardi, Assunta Ingannato, Sandro Sorbi, Benedetta Nacmias, Valentina Bessi, Giulia Giacomucci, Salvatore Mazzeo, Silvia Bagnoli, Matteo Casini, Sonia Padiglioni, Cristina Polito, Valentina Berti, Juri Balestrini, Camilla Ferrari, Gemma Lombardi, Assunta Ingannato, Sandro Sorbi, Benedetta Nacmias, Valentina Bessi

Abstract

Background: The aims of this study were to compare the diagnostic accuracy, sensitivity, specificity, and positive and negative predictive values (PPV, NPV) of different cerebrospinal fluid (CSF) amyloid biomarkers and amyloid-Positron Emission Tomography (PET) in patients with a clinical diagnosis of Alzheimer's disease (AD) and Frontotemporal Dementia (FTD); to compare concordance between biomarkers; and to provide an indication of their use and interpretation.

Methods: We included 148 patients (95 AD and 53 FTD), who underwent clinical evaluation, neuropsychological assessment, and at least one amyloid biomarker (CSF analysis or amyloid-PET). Thirty-six patients underwent both analyses. One-hundred-thirteen patients underwent Apolipoprotein E (ApoE) genotyping.

Results: Amyloid-PET presented higher diagnostic accuracy, sensitivity, and NPV than CSF Aβ1-42 but not Aβ42/40 ratio. Concordance between CSF biomarkers and amyloid-PET was higher in FTD patients compared to AD cases. None of the AD patients presented both negative Aβ biomarkers.

Conclusions: CSF Aβ42/40 ratio significantly increased the diagnostic accuracy of CSF biomarkers. On the basis of our current and previous data, we suggest a flowchart to guide the use of biomarkers according to clinical suspicion: due to the high PPV of both amyloid-PET and CSF analysis including Aβ42/40, in cases of concordance between at least one biomarker and clinical diagnosis, performance of the other analysis could be avoided. A combination of both biomarkers should be performed to better characterize unclear cases. If the two amyloid biomarkers are both negative, an underlying AD pathology can most probably be excluded.

Keywords: Alzheimer’s disease; CSF biomarkers; amyloid-PET; frontotemporal dementia.

Conflict of interest statement

The authors have no conflict of interest.

Figures

Figure 1
Figure 1
Comparison of diagnostic accuracy among different Aβ biomarkers. X-axis represents diagnostic accuracy in % (95% C.I.); different amyloid biomarkers are shown in Y-axis. The area of each square is proportional to the degree of the distribution of values of diagnostic accuracy of each biomarker and to the number of patients for whom each biomarker is available. The whiskers represent 95% C.I. The dotted vertical lines separate accuracy values that are significantly different.
Figure 2
Figure 2
Comparison of sensitivity and specificity among different Aβ biomarkers. (a) X-axis represents sensitivity in % (95% C.I.); different amyloid biomarkers are shown in Y-axis. (b) X-axis represents specificity in % (95% C.I.); different amyloid biomarkers are shown in Y-axis. The area of each square is proportional to the degree of the distribution of values of sensitivity and specificity of each biomarker and to the number of patients for whom each biomarker is available. The whiskers represent 95% C.I. The dotted vertical lines separate sensitivity (a) and specificity (b) values that are significantly different.
Figure 3
Figure 3
Comparison of negative and positive predictive values among different Aβ biomarkers. (a) X-axis represents negative predictive value (NPV) in % (95% C.I.); different amyloid biomarkers are shown in Y-axis. (b) X-axis represents positive predictive value (PPV) in % (95% C.I.); different amyloid biomarkers are shown in Y-axis. The area of each square is proportional to the degree of the distribution of values of positive and negative predictive values of each biomarker and to the number of patients for whom each biomarker is available. The whiskers represent 95% C.I. The dotted vertical lines separate NPV (a) and PPV (b) that are significantly different.
Figure 4
Figure 4
Flow chart for use and interpretation of amyloid biomarkers according to clinical suspect. (a) Indication for interpretation of amyloid biomarkers in the case of a clinical diagnosis of Alzheimer’s disease. (b) Indication for interpretation of amyloid biomarkers in the case of a clinical diagnosis of Frontotemporal dementia.

References

    1. Scheltens P., Blennow K., Breteler M.M., de Strooper B., Frisoni G.B., Salloway S., Van der Flier W.M. Alzheimer’s disease. Lancet. 2016;388:505–517. doi: 10.1016/S0140-6736(15)01124-1.
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–944. doi: 10.1212/WNL.34.7.939.
    1. Dubois B., Feldman H.H., Jacova C., Hampel H., Molinuevo J.L., Blennow K., DeKosky S.T., Gauthier S., Selkoe D., Bateman R., et al. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014;13:614–629. doi: 10.1016/S1474-4422(14)70090-0.
    1. Strozyk D., Blennow K., White L.R., Launer L.J. CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology. 2003;60:652–656. doi: 10.1212/01.WNL.0000046581.81650.D0.
    1. Lewczuk P., Esselmann H., Otto M., Maler J.M., Henkel A.W., Henkel M.K., Eikenberg O., Antz C., Krause W.R., Reulbach U., et al. Neurochemical diagnosis of Alzheimer’s dementia by CSF Abeta42, Abeta42/Abeta40 ratio and total tau. Neurobiol. Aging. 2004;25:273–281. doi: 10.1016/S0197-4580(03)00086-1.
    1. Tapiola T., Overmyer M., Lehtovirta M., Helisalmi S., Ramberg J., Alafuzoff I., Riekkinen P.S., Soininen H. The level of cerebrospinal fluid tau correlates with neurofibrillary tangles in Alzheimer’s disease. Neuroreport. 1997;8:3961–3963. doi: 10.1097/00001756-199712220-00022.
    1. Buerger K., Ewers M., Pirttila T., Zinkowski R., Alafuzoff I., Teipel S.J., DeBernardis J., Kerkman D., McCulloch C., Hampel H., et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain. 2006;129:3035–3041. doi: 10.1093/brain/awl269.
    1. Tapiola T., Alafuzoff I., Herukka S.K., Parkkinen L., Hartikainen P., Soininen H., Pirttilä T. Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 2009;66:382–389. doi: 10.1001/archneurol.2008.596.
    1. Ikonomovic M.D., Klunk W.E., Abrahamson E.E., Mathis C.A., Price J.C., Tsopelas N.D., Lopresti B.J., Ziolko S., Bi W., Paljug W.R., et al. Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease. Brain. 2008;131:1630–1645. doi: 10.1093/brain/awn016.
    1. Sabri O., Sabbagh M.N., Seibyl J., Barthel H., Akatsu H., Ouchi Y., Senda K., Murayama S., Ishii K., Takao M., et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: Phase 3 study. Alzheimers Dement. 2015;11:964–974. doi: 10.1016/j.jalz.2015.02.004.
    1. Curtis C., Gamez J.E., Singh U., Sadowsky C.H., Villena T., Sabbagh M.N., Beach T.G., Duara R., Fleisher A.S., Frey K.A., et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–294. doi: 10.1001/jamaneurol.2014.4144.
    1. Clark C.M., Pontecorvo M.J., Beach T.G., Bedell B.J., Coleman R.E., Doraiswamy P.M., Fleisher A.S., Reiman E.M., Sabbagh M.N., Sadowsky C.H., et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: A prospective cohort study. Lancet Neurol. 2012;11:669–678. doi: 10.1016/S1474-4422(12)70142-4.
    1. Jack C.R., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018.
    1. Sperling R.A., Aisen P.S., Beckett L.A., Bennett D.A., Craft S., Fagan A.M., Iwatsubo T., Jack C.R., Jr., Kaye J., Montine T.J., et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:280–292. doi: 10.1016/j.jalz.2011.03.003.
    1. Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., Gamst A., Holtzman D.M., Jagust W.J., Petersen R.C., et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008.
    1. McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005.
    1. Fagan A.M. What does it mean to be “amyloid-positive”? Brain. 2015;138:514–516. doi: 10.1093/brain/awu387.
    1. Fagan A.M., Mintun M.A., Shah A.R., Aldea P., Roe C.M., Mach R.H., Marcus D., Morris J.C., Holtzman D.M. Cerebrospinal fluid tau and ptau181 increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer’s disease. EMBO Mol. Med. 2009;1:371–380. doi: 10.1002/emmm.200900048.
    1. Zwan M.D., Rinne J.O., Hasselbalch S.G., Nordberg A., Lleó A., Herukka S.K., Soininen H., Law I., Bahl J.M., Carter S.F., et al. Use of amyloid-PET to determine cutpoints for CSF markers: A multicenter study. Neurol. Int. 2016;86:50–58. doi: 10.1212/WNL.0000000000002081.
    1. Blennow K., Mattsson N., Schöll M., Hansson O., Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol. Sci. 2015;36:297–309. doi: 10.1016/j.tips.2015.03.002.
    1. Rohrer J.D., Lashley T., Schott J.M., Warren J.E., Mead S., Isaacs A.M., Beck J., Hardy J., de Silva R., Warrington E., et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain. 2011;134:2565–2581. doi: 10.1093/brain/awr198.
    1. Knibb J.A., Xuereb J.H., Patterson K., Hodges J.R. Clinical and pathological characterization of progressive aphasia. Ann. Neurol. 2006;59:156–165. doi: 10.1002/ana.20700.
    1. Alladi S., Xuereb J., Bak T., Nestor P., Knibb J., Patterson K., Hodges J.R. Focal cortical presentations of Alzheimer’s disease. Brain. 2007;130:2636–2645. doi: 10.1093/brain/awm213.
    1. Blennow K. A review of fluid biomarkers for Alzheimer’s Disease: Moving from CSF to blood. Neurol. Ther. 2017;6:15–24. doi: 10.1007/s40120-017-0073-9.
    1. Paterson R.W., Slattery C.F., Poole T., Nicholas J.M., Magdalinou N.K., Toombs J., Chapman M.D., Lunn M.P., Heslegrave A.J., Foiani M.S., et al. Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: Clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimers Res. Ther. 2018;10:32. doi: 10.1186/s13195-018-0361-3.
    1. Neary D., Snowden J.S., Gustafson L., Passant U., Stuss D., Black S., Freedman M., Kertesz A., Robert P.H., Albert M., et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology. 1998;51:1546–1554. doi: 10.1212/WNL.51.6.1546.
    1. Bracco L., Amaducci L., Pedone D., Bino G., Lazzaro M.P., Carella F., D’Antona R., Gallato R., Denes G. Italian Multicentre Study on Dementia (SMID): A neuropsychological test battery for assessing Alzheimer’s disease. J. Psychiatr. Res. 1990;24:213–226. doi: 10.1016/0022-3956(90)90011-E.
    1. Caffarra P., Vezzadini G., Dieci F., Zonato F., Venneri A. Rey-Osterrieth complex figure: Normative values in an Italian population sample. Neurol. Sci. 2002;22:443–447. doi: 10.1007/s100720200003.
    1. Baddeley A., Della Sala S., Papagno C., Spinnler H. Dual-task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology. 1997;11:187–194. doi: 10.1037/0894-4105.11.2.187.
    1. Spinnler H., Tognoni G. Standardizzazione e taratura italiana di test neuropsicologici: Gruppo italiano per lo studio neuropsicologico dell’invecchiamento. Ital. J. Neurol. Sci. 1987;6:21–120.
    1. Giovagnoli A.R., Del Pesce M., Mascheroni S., Simoncelli M., Laiacona M., Capitani E. Trailmaking test: Normative values from 287 normaladultcontrols. Ital. J. Neurol. Sci. 1996;17:305–309. doi: 10.1007/BF01997792.
    1. Brazzelli M., Della Sala S., Laiacona M. Calibration of the Italian version of the Rivermead Behavioural Memory Test: A test for the ecological evaluation of memory. Boll. Psicol. Appl. 1993;206:33–42.
    1. Colombo L., Sartori G., Brivio C. Stima del quoziente intellettivo tramite l’applicazione del TIB (Test Breve di Intelligenza) Giomale Ital. Psicol. 2002;3:613–663.
    1. Nelson H. National Adult Reading Test (NART): For the Assessment of Premorbid Intelligence in Patients with Dementia: Test Manual. NFER-Nelson; Windsor, UK: 1982.
    1. Hamilton M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry. 1960;23:56–62. doi: 10.1136/jnnp.23.1.56.
    1. Minoshima S., Drzezga A.E., Barthel H., Bohnen N., Djekidel M., Lewis D.H., Mathis C.A., McConathy J., Nordberg A., Sabri O., et al. SNMMI Procedure Standard/EANM Practice Guideline for Amyloid PET Imaging of the Brain 1.0. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2016;57:1316–1322. doi: 10.2967/jnumed.116.174615.
    1. Molinuevo J.L., Gispert J.D., Dubois B., Heneka M.T., Lleo A., Engelborghs S., Pujol J., de Souza L.C., Alcolea D., Jessen F., et al. The AD-CSF-index discriminates Alzheimer’s disease patients from healthy controls: A validation study. J. Alzheimers Dis. JAD. 2013;36:67–77. doi: 10.3233/JAD-130203.
    1. Alcolea D., Pegueroles J., Muñoz L., Camacho V., López-Mora D., Fernández-León A., Le Bastard N., Huyck E., Nadal A., Olmedo V., et al. Agreement of amyloid PET and CSF biomarkers for Alzheimer’s disease on Lumipulse. Ann. Clin. Transl. Neurol. 2019;6:1815–1824. doi: 10.1002/acn3.50873.
    1. Sorbi S., Nacmias B., Forleo P., Latorraca S., Gobbini I., Bracco L., Piacentini S., Amaducci L. ApoE allele frequencies in Italian sporadic and familial Alzheimer’s disease. Neurosci. Lett. 1994;177:100–102. doi: 10.1016/0304-3940(94)90054-X.
    1. Primer3 (v.0.4.0) Pick primers from a DNA sequence. [(accessed on 8 September 2020)]; Available online:
    1. Bessi V., Piaceri I., Padiglioni S., Bagnoli S., Berti V., Sorbi S., Nacmias B. Crossed aphasia in nonfluent variant of primary progressive aphasia carrying a GRN mutation. J. Neurol. Sci. 2018;15:34–37. doi: 10.1016/j.jns.2018.06.026.
    1. Mazzeo S., Polito C., Padiglioni S., Berti V., Bagnoli S., Lombardi G., Piaceri I., Carraro M., De Cristofaro M.T., Passeri A., et al. Linguistic profiles, brain metabolic patterns and rates of amyloid-β biomarker positivity in patients with mixed primary progressive aphasia. Neurobiol. Aging. 2020;96:155–164. doi: 10.1016/j.neurobiolaging.2020.09.004.
    1. Varma A.R., Snowden J.S., Lloyd J.J., Talbot P.R., Mann D.M., Neary D. Evaluation of the NINCDS-ADRDA criteria in the differentiation of Alzheimer’s disease and frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry. 1999;66:184–188. doi: 10.1136/jnnp.66.2.184.
    1. Rabinovici G.D., Rosen H.J., Alkalay A., Kornak J., Furst A.J., Agarwal N., Mormino E.C., O’Neil J.P., Janabi M., Karydas A., et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology. 2001;77:2034–2042. doi: 10.1212/WNL.0b013e31823b9c5e.
    1. Landau S.M., Lu M., Joshi A.D., Pontecorvo M., Mintun M.A., Trojanowski J.Q., Shaw L.M., Jagust W.J., Alzheimer’s Disease Neuroimaging Initiative Comparing positron emission tomography imaging and cerebrospinal fluid measurements of β-amyloid. Ann. Neurol. 2013;74:826–836. doi: 10.1002/ana.23908.
    1. Jagust W.J., Landau S.M., Shaw L.M., Trojanowski J.Q., Koeppe R.A., Reiman E.M., Foster N.L., Petersen R.C., Weiner M.W., Price J.C., et al. Relationships between biomarkers in aging and dementia. Neurology. 2009;73:1193–1199. doi: 10.1212/WNL.0b013e3181bc010c.
    1. Mattsson N., Insel P.S., Landau S., Jagust W., Donohue M., Shaw L.M., Trojanowski J.Q., Zetterberg H., Blennow K., Weiner M. Alzheimer’s Disease Neuroimaging Initiativea. Diagnostic accuracy of CSF Ab42 and florbetapir PET for Alzheimer’s disease. Ann. Clin. Transl. Neurol. 2014;1:534–543. doi: 10.1002/acn3.81.
    1. Spies P.E., Slats D., Sjogren J.M., Kremer B.P., Verhey F.R., Rikkert M.G., Verbeek M.M. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer’s disease from non-Alzheimer’s dementia. Curr. Alzheimer Res. 2010;7:470–476. doi: 10.2174/156720510791383796.
    1. Slaets S., Le Bastard N., Martin J.J., Sleegers K., Van Broeckhoven C., De Deyn P.P., Engelborghs S. Cerebrospinal fluid Abeta1-40 improves differential dementia diagnosis in patients with intermediate P-tau181P levels. J. Alzheimers Dis. 2013;36:759–767. doi: 10.3233/JAD-130107.
    1. Portelius E., Westman-Brinkmalm A., Zetterberg H., Blennow K. Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry. J. Proteome Res. 2006;5:1010–1016. doi: 10.1021/pr050475v.
    1. Hansson O., Lehmann S., Otto M., Zetterberg H., Lewczuk P. Advantages and disadvantages of the use of the CSF Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer’s Disease. Alzheimers Res. Ther. 2019;11:34. doi: 10.1186/s13195-019-0485-0.
    1. Leuzy A., Carter S.F., Chiotis K., Almkvist O., Wall A., Nordberg A. Concordance and Diagnostic Accuracy of [11C]PIB PET and Cerebrospinal Fluid Biomarkers in a Sample of Patients with Mild Cognitive Impairment and Alzheimer’s Disease. J. Alzheimers Dis. 2015;45:1077–1088. doi: 10.3233/JAD-142952.
    1. Jung N.Y., Kim E.S., Kim H.S., Jeon S., Lee M.J., Pak K., Lee J.H., Lee Y.M., Lee K., Shin J.H., et al. Comparison of Diagnostic Performances Between Cerebrospinal Fluid Biomarkers and Amyloid PET in a Clinical Setting. J. Alzheimers Dis. 2020;74:473–490. doi: 10.3233/JAD-191109.
    1. De Wilde A., Reimand J., Teunissen C.E., Zwan M., Windhorst A.D., Boellaard R., van der Flier W.M., Scheltens P., van Berckel B.N.M., Bouwman F., et al. Discordant amyloid-β PET and CSF biomarkers and its clinical consequences. Alzheimers Res. Ther. 2019;11:78. doi: 10.1186/s13195-019-0532-x.
    1. Reimand J., de Wilde A., Teunissen C.E., Zwan M., Windhorst A.D., Boellaard R., Barkhof F., van der Flier W.M., Scheltens P., van Berckel B.N.M., et al. PET and CSF amyloid-β status are differently predicted by patient features: Information from discordant cases. Alzheimers Res. Ther. 2019;11:100. doi: 10.1186/s13195-019-0561-5.
    1. Leuzy A., Chiotis K., Hasselbalch S.G., Rinne J.O., de Mendonça A., Otto M., Lleó A., Castelo-Branco M., Santana I., Johansson J., et al. Pittsburgh compound B imaging and cerebrospinal fluid amyloid-β in a multicentre European memory clinic study. Brain. 2016;139:2540–2553. doi: 10.1093/brain/aww160.
    1. Palmqvist S., Zetterberg H., Mattsson N., Johansson P., Alzheimer’s Disease Neuroimaging Initiative. Minthon L., Blennow K., Olsson M., Hansson O., Swedish BioFINDER Study Group Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology. 2015;85:1240–1249. doi: 10.1212/WNL.0000000000001991.
    1. Mattsson N., Insel P.S., Donohue M., Landau S., Jagust W.J., Shaw L.M., Trojanowski J.Q., Zetterberg H., Blennow K., Weiner M.W., et al. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer’s disease. Brain. 2015;138:772–783. doi: 10.1093/brain/awu367.
    1. Palmqvist S., Mattsson N., Hansson O., Initiative A. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. Brain. 2016;139:1226–1236. doi: 10.1093/brain/aww015.
    1. Morris E., Chalkidou A., Hammers A., Peacock J., Summers J., Keevil S. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:374–385. doi: 10.1007/s00259-015-3228-x.
    1. Mattsson N., Rajendran L., Zetterberg H., Gustavsson M., Andreasson U., Olsson M., Brinkmalm G., Lundkvist J., Jacobson L.H., Perrot L., et al. BACE1 Inhibition induces a specific cerebrospinal fluid beta-amyloid pattern that identifies drug effects in the central nervous system. PLoS ONE. 2012;7:e31084. doi: 10.1371/journal.pone.0031084.
    1. Reiman E.M., Quiroz Y.T., Fleisher A.S., Chen K., Velez-Pardo C., Jimenez-Del-Rio M., Fagan A.M., Shah A.R., Alvarez S., Arbelaez A., et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: A case-control study. Lancet Neurol. 2012;11:1048–1056. doi: 10.1016/S1474-4422(12)70228-4.
    1. Potter R., Patterson B.W., Elbert D.L., Ovod V., Kasten T., Sigurdson W., Mawuenyega K., Blazey T., Goate A., Chott R., et al. Increased in vivo amyloid-b42 production, exchange, and loss in presenilin mutation carriers. Sci. Transl. Med. 2013;5:189ra77. doi: 10.1126/scitranslmed.3005615.
    1. Scholl M., Wall A., Thordardottir S., Ferreira D., Bogdanovic N., Långström B., Almkvist O., Graff C., Nordberg A. Low PiB PET retention in presence of pathologic CSF biomarkers in Arctic APP mutation carriers. Neurology. 2012;79:229–236. doi: 10.1212/WNL.0b013e31825fdf18.
    1. Mattsson N., Axelsson M., Haghighi S., Malmestrom C., Wu G., Anckarsäter R., Sankaranarayanan S., Andreasson U., Fredrikson S., Gundersen A., et al. Reduced cerebrospinal fluid BACE1 activity in multiple sclerosis. Mult. Scler. 2009;15:448–454. doi: 10.1177/1352458508100031.
    1. Selnes P., Blennow K., Zetterberg H., Grambaite R., Rosengren L., Johnsen L., Stenset V., Fladby T. Effects of cerebrovascular disease on amyloid precursor protein metabolites in cerebrospinal fluid. Cereb. Fluid Res. 2010;7:10. doi: 10.1186/1743-8454-7-10.
    1. Hansson O., Mikulskis A., Fagan A.M., Teunissen C., Zetterberg H., Vanderstichele H., Molinuevo J.L., Shaw L.M., Vandijck M., Verbeek M.M., et al. The impact of preanalytical variables on measuring cerebrospinal fluid biomarkers for Alzheimer’s disease diagnosis: A review. Alzheimers Dement. 2018;14:1313–1333. doi: 10.1016/j.jalz.2018.05.008.
    1. Ossenkoppele R., Jansen W.J., Rabinovici G.D., Knol D.L., van der Flier W.M., van Berckel B.N., Scheltens P., Visser P.J., Amyloid PET Study Group. Verfaillie S.C., et al. Prevalence of amyloid PET positivity in dementia syndromes: A meta-analysis. JAMA. 2015;313:1939–1949. doi: 10.1001/jama.2015.4669.
    1. Clark C.M., Schneider J.A., Bedell B.J., Beach T.G., Bilker W.B., Mintun M.A., Pontecorvo M.J., Hefti F., Carpenter A.P., Flitter M.L., et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275–283. doi: 10.1001/jama.2010.2008.
    1. Weston P.S., Paterson R.W., Dickson J., Barnes A., Bomanji J.B., Kayani I., Lunn M.P., Mummery C.J., Warren J.D., Rossor M.N., et al. Diagnosing Dementia in the Clinical Setting: Can Amyloid PET Provide Additional Value Over Cerebrospinal Fluid? J. Alzheimers Dis. 2016;54:1297–1302. doi: 10.3233/JAD-160302.
    1. Robinson J.L., Lee E.B., Xie S.X., Rennert L., Suh E., Bredenberg C., Caswell C., Van Deerlin V.M., Yan N., Yousef A., et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018;141:2181–2193. doi: 10.1093/brain/awy146.
    1. Bergeron D., Gorno-Tempini M.L., Rabinovici G.D., Santos-Santos M.A., Seeley W., Miller B.L., Pijnenburg Y., Keulen M.A., Groot C., van Berckel B.N.M., et al. Prevalence of amyloid-b pathology in distinct variants of primary progressive aphasia. Ann. Neurol. 2018;84:729–740. doi: 10.1002/ana.25333.
    1. Chételat G., Arbizu J., Barthel H., Garibotto V., Law I., Morbelli S., van de Giessen E., Agosta F., Barkhof F., Brooks D.J., et al. Amyloid-PET and 18F-FDG-PET in the diagnostic investigation of Alzheimer’s disease and other dementias. Lancet Neurol. 2020;19:951–962. doi: 10.1016/S1474-4422(20)30314-8.
    1. Ramusino M.C., Garibotto V., Bacchin R., Altomare D., Dodich A., Assal F., Mendes A., Costa A., Tinazzi M., Morbelli S.D., et al. Incremental value of amyloid-PET versus CSF in the diagnosis of Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging. 2020;47:270–280. doi: 10.1007/s00259-019-04466-6.
    1. Fink H.A., Linskens E.J., Silverman P.C., McCarten J.R., Hemmy L.S., Ouellette J.M., Greer N.L., Wilt T.J., Butler M. Accuracy of Biomarker Testing for Neuropathologically Defined Alzheimer Disease in Older Adults With Dementia. Ann. Intern. Med. 2020;172:669–677. doi: 10.7326/M19-3888.
    1. Gorno-Tempini M.L., Hillis A.E., Weintraub S., Kertesz A., Mendez M., Cappa S.F., Ogar J.M., Rohrer J.D., Black S., Boeve B.F., et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76:1006–1014. doi: 10.1212/WNL.0b013e31821103e6.

Source: PubMed

3
S'abonner