Developing Small Molecule Therapeutics for the Initial and Adjunctive Treatment of Snakebite

Tommaso C Bulfone, Stephen P Samuel, Philip E Bickler, Matthew R Lewin, Tommaso C Bulfone, Stephen P Samuel, Philip E Bickler, Matthew R Lewin

Abstract

The World Health Organization (WHO) recently added snakebite envenoming to the priority list of Neglected Tropical Diseases (NTD). It is thought that ~75% of mortality following snakebite occurs outside the hospital setting, making the temporal gap between a bite and antivenom administration a major therapeutic challenge. Small molecule therapeutics (SMTs) have been proposed as potential prereferral treatments for snakebite to help address this gap. Herein, we discuss the characteristics, potential uses, and development of SMTs as potential treatments for snakebite envenomation. We focus on SMTs that are secretory phospholipase A2 (sPLA2) inhibitors with brief exploration of other potential drug targets on venom molecules.

Figures

Figure 1
Figure 1
Potential uses of an SMT, via PO (oral), or IV (intravenous).
Figure 2
Figure 2
Advantages and limitations of antivenom and SMTs. If proven effective, an SMT might address some limitations of antivenom and vice versa. (COGS = Cost of Goods).
Figure 3
Figure 3
Hypothetical pipeline of SMTs for snakebite treatment. (a) Targeted inhibition of major snake venom enzymatic toxins, secreted phospholipase A2 (sPLA2), and metallo- and serine-proteases (svMP and SP), through a combination of multiple inhibitory small molecules. (b) In combination with biologicals or others as adjuncts to antivenom for hospital administration (e.g., for targeting non-enzymatic toxins, such as 3-FTX).
Figure 4
Figure 4
Hit to Lead: a variety of strategies to discover new SMTs and an example of processes and targets for High Throughput Screening (HTS) of candidate snake venom SMTs. sPLA2, svMP, and SP serve as examples of potential targets. Different assay methods are used for each type of enzymatic activity so screens would be run separately even if compound libraries were the same.
Figure 5
Figure 5
Scheme of a potential SMT development pathway. “Sections” correspond to paragraphs that follow. The repurposing pathway accelerates development and lowers costs by starting at a more advanced stage of development than a new chemical entity.
Figure 6
Figure 6
Structure of candidate SMTs for repurposing: varespladib (top left), its orally bioavailable pro-drug, methyl-varespladib (top right), prinomastat (bottom left), and marimatsat (bottom right). Marimastat and prinomastat are both orally bioavailable and could be combined (mixed or copackaged) for more extensive coverage as field antidotes [1, 54].

References

    1. Gutiérrez J. M., Calvete J. J., Habib A. G., Harrison R. A., Williams D. J., Warrell D. A. Snakebite envenoming. Nature Reviews Disease Primers. 2017;3:p. 17063. doi: 10.1038/nrdp.2017.63.
    1. The Lancet. Snake-bite envenoming: a priority neglected tropical disease. The Lancet. 2017;390(10089):p. 2. doi: 10.1016/S0140-6736(17)31751-8.
    1. Chippaux J.-P. Snake-bites: appraisal of the global situation. Bulletin of the World Health Organization. 1998;76(5):515–524.
    1. Sharma S. K., Chappuis F., Jha N., Bovier P. A., Loutan L., Koirala S. Impact of snake bites and determinants of fatal outcomes in Southeastern Nepal. The American Journal of Tropical Medicine and Hygiene. 2004;71(2):234–238.
    1. Vaiyapuri S., Vaiyapuri R., Ashokan R., et al. Snakebite and its socio-economic impact on the rural population of Tamil Nadu, India. PLoS ONE. 2013;8(11) doi: 10.1371/journal.pone.0080090.e80090
    1. Dandona R., Kumar G. A., Kharyal A., et al. Mortality due to snakebite and other venomous animals in the Indian state of Bihar: Findings from a representative mortality study. PLoS ONE. 2018;13(6):p. e0198900. doi: 10.1371/journal.pone.0198900.
    1. Laustsen A. H., Engmark M., Milbo C., et al. From fangs to pharmacology: The future of snakebite envenoming therapy. Current Pharmaceutical Design. 2016;22(34):5270–5293. doi: 10.2174/1381612822666160623073438.
    1. Lewin M., Samuel S., Merkel J., Bickler P. Varespladib (LY315920) appears to be a potent, broad-spectrum, inhibitor of snake venom phospholipase A2 and a possible pre-referral treatment for envenomation. Toxins. 2016;8(9, article no. 248) doi: 10.3390/toxins8090248.
    1. Rouget C., Quinton L., Maïga A., et al. Identification of a novel snake peptide toxin displaying high affinity and antagonist behaviour for the α 2-adrenoceptors. British Journal of Pharmacology. 2010;161(6):1361–1374. doi: 10.1111/j.1476-5381.2010.00966.x.
    1. Näreoja K., Näsman J. Selective targeting of G-protein-coupled receptor subtypes with venom peptides. Acta Physiologica. 2012;204(2):186–201. doi: 10.1111/j.1748-1716.2011.02305.x.
    1. Samy R. P., Gopalakrishnakone P., Chow V. T. Therapeutic application of natural inhibitors against snake venom phospholipase A2. Bioinformation. 2012;8(1):48–57. doi: 10.6026/97320630008048.
    1. Bastos V. A., Gomes-Neto F., Perales J., Neves-Ferreira A. G. C., Valente R. H. Natural inhibitors of snake venom metalloendopeptidases: History and current challenges. Toxins. 2016;8(9, article no. 250) doi: 10.3390/toxins8090250.
    1. Soares A. M., Ticli F. K., Marcussi S., et al. Medicinal plants with inhibitory properties against snake venoms. Current Medicinal Chemistry. 2005;12(22):2625–2641. doi: 10.2174/092986705774370655.
    1. Carvalho B. M. A., Santos J. D. L., Xavier B. M., et al. Snake Venom PLA2s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules. BioMed Research International. 2013;2013:1–8. doi: 10.1155/2013/153045.153045
    1. Xiao Huixiang, Pan Hong, Liao Keren, Yang Mengxue, Huang Chunhong. Snake Venom PLA2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BioMed Research International. 2017;2017:1–10. doi: 10.1155/2017/6592820.
    1. Knudsen C., Laustsen A. H. Recent Advances in Next Generation Snakebite Antivenoms. Tropical Medicine and Infectious Disease. 2018;3(2):p. 42. doi: 10.3390/tropicalmed3020042.
    1. Howes J.-M., Theakston R. D. G., Laing G. D. Neutralization of the haemorrhagic activities of viperine snake venoms and venom metalloproteinases using synthetic peptide inhibitors and chelators. Toxicon. 2007;49(5):734–739. doi: 10.1016/j.toxicon.2006.11.020.
    1. Escalante T., Franceschi A., Rucavado A., Gutiérrez J. M. Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Biochemical Pharmacology. 2000;60(2):269–274. doi: 10.1016/S0006-2952(00)00302-6.
    1. Angulo Y., Lomonte B. Inhibitory effect of fucoidan on the activities of crotaline snake venom myotoxic phospholipases A2. Biochemical Pharmacology. 2003;66(10):1993–2000. doi: 10.1016/S0006-2952(03)00579-3.
    1. Murakami M. T., Arruda E. Z., Melo P. A., Martinez A. B., Calil-Eliás S., Tomaz M. A., et al. Inhibition of myotoxic activity of Bothrops asper myotoxin II by the anti-trypanosomal drug suramin. Journal of Molecular Biology. 2005;350:416–426. doi: 10.1016/j.jmb.2005.04.072.
    1. Laustsen A. H., María Gutiérrez J., Knudsen C., et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon. 2018;146:151–175. doi: 10.1016/j.toxicon.2018.03.004.
    1. De Silva H. A., Ryan N. M., De Silva H. J. Adverse reactions to snake antivenom, and their prevention and treatment. British Journal of Clinical Pharmacology. 2016;81(3):446–452. doi: 10.1111/bcp.12739.
    1. Sharma S. K., Kuch U., Höde P., et al. Use of Molecular Diagnostic Tools for the Identification of Species Responsible for Snakebite in Nepal: A Pilot Study. PLOS Neglected Tropical Diseases. 2016;10(4) doi: 10.1371/journal.pntd.0004620.e0004620
    1. Hung D. Z., Lin J. H., Mo J. F., Huang C. F., Liau M. Y. Rapid diagnosis of Naja atra snakebites. Clinical Toxicology. 2014;52(3):187–191. doi: 10.3109/15563650.2014.887725.
    1. Klug D. M., Gelb M. H., Pollastri M. P. ChemInform Abstract: Repurposing Strategies for Tropical Disease Drug Discovery. ChemInform. 2016;47(25) doi: 10.1002/chin.201625271.
    1. Sanhajariya S., Duffull S., Isbister G. Pharmacokinetics of Snake Venom. Toxins. 2018;10(2):p. 73. doi: 10.3390/toxins10020073.
    1. Bayer Pharmaceuticals Bayer - Small and large molecules Available online.
    1. Borges R. J., Lemke N., Fontes M. R. PLA2-like proteins myotoxic mechanism: a dynamic model description. Scientific Reports. 2017;7(1) doi: 10.1038/s41598-017-15614-z.
    1. Bazin-Redureau M., Pepin S., Hong G., Debray M., Scherrmann J. Interspecies Scaling of Clearance and Volume of Distribution for Horse Antivenom F(ab′)2. Toxicology and Applied Pharmacology. 1998;150(2):295–300. doi: 10.1006/taap.1997.8363.
    1. Smith D. A., Beaumont K., Maurer T. S., Di L. Volume of Distribution in Drug Design. Journal of Medicinal Chemistry. 2015;58(15):5691–5698. doi: 10.1021/acs.jmedchem.5b00201.
    1. Gutiérrez J., Solano G., Pla D., et al. Preclinical Evaluation of the Efficacy of Antivenoms for Snakebite Envenoming: State-of-the-Art and Challenges Ahead. Toxins. 2017;9(5):p. 163. doi: 10.3390/toxins9050163.
    1. WHO. WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. Geneva, Switzerland: 2010.
    1. Laustsen A. H. Toxin-centric development approach for next-generation antivenoms. Toxicon. 2018;150:195–197. doi: 10.1016/j.toxicon.2018.05.021.
    1. Laustsen A. H. Toxin synergism in snake venoms. Toxin Reviews. 2016;35(3-4):165–170. doi: 10.1080/15569543.2016.1220397.
    1. Laustsen A. H., Lohse B., Lomonte B., Engmark M., Gutiérrez J. M. Selecting key toxins for focused development of elapid snake antivenoms and inhibitors guided by a Toxicity Score. Toxicon. 2015;104:43–45. doi: 10.1016/j.toxicon.2015.07.334.
    1. Williams D. J., Gutiérrez J.-M., Calvete J. J., et al. Ending the drought: New strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. Journal of Proteomics. 2011;74(9):1735–1767. doi: 10.1016/j.jprot.2011.05.027.
    1. Calvete J. J., Lomonte B. A bright future for integrative venomics. Toxicon. 2015;107:159–162. doi: 10.1016/j.toxicon.2015.10.024.
    1. Relative Abundance Display Tropical Pharmacology Lab Available online.
    1. Casewell N. R., Wagstaff S. C., Wüster W., et al. Medically important differences in snake venom composition are dictated by distinct postgenomic mechanisms. Proceedings of the National Acadamy of Sciences of the United States of America. 2014;111(25):9205–9210. doi: 10.1073/pnas.1405484111.
    1. Tasoulis T., Isbister G. A Review and Database of Snake Venom Proteomes. Toxins. 2017;9(9):p. 290. doi: 10.3390/toxins9090290.
    1. Banerjee R. N., Sahni A. L., Chacko K. A., Vijay K. Neostigmine in the treatment of Elapidae bites. The Journal of the Association of Physicians of India. 1972;20:p. 503.
    1. Laustsen A. H., Lomonte B., Lohse B., Fernández J., Gutiérrez J. M. Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. Journal of Proteomics. 2015;119:126–142. doi: 10.1016/j.jprot.2015.02.002.
    1. Ownby C. L., Aird S. D., Kaiser I. I. Physiological and immunological properties of small myotoxins from the venom of the midget faded rattlesnake (Crotalus viridis concolor) Toxicon. 1988;26(3):319–323. doi: 10.1016/0041-0101(88)90223-1.
    1. Oguiura N., Boni-Mitake M., Affonso R., Zhang G. In vitro antibacterial and hemolytic activities of crotamine, a small basic myotoxin from rattlesnake Crotalus durissus. The Journal of Antibiotics. 2011;64(4):327–331. doi: 10.1038/ja.2011.10.
    1. Kini R., Koh C. Metalloproteases Affecting Blood Coagulation, Fibrinolysis and Platelet Aggregation from Snake Venoms: Definition and Nomenclature of Interaction Sites. Toxins. 2016;8(10):p. 284. doi: 10.3390/toxins8100284.
    1. Kini R. M. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005;45(8):1147–1161. doi: 10.1016/j.toxicon.2005.02.018.
    1. Kini R. M., Doley R. Structure, function and evolution of three-finger toxins: Mini proteins with multiple targets. Toxicon. 2010;56(6):855–867. doi: 10.1016/j.toxicon.2010.07.010.
    1. Harris J. B., Scott-Davey T. Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins. 2013;5(12):2533–2571. doi: 10.3390/toxins5122533.
    1. Markland F. S., Swenson S. Snake venom metalloproteinases. Toxicon. 2013;62:3–18. doi: 10.1016/j.toxicon.2012.09.004.
    1. Ranawaka U. K., Lalloo D. G., de Silva H. J., White J. Neurotoxicity in snakebite—the limits of our knowledge. PLOS Neglected Tropical Diseases. 2013;7(10) doi: 10.1371/journal.pntd.0002302.e2302
    1. Zelanis A., Huesgen P. F., Oliveira A. K., Tashima A. K., Serrano S. M. T., Overall C. M. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. Journal of Proteomics. 2015;113:260–267. doi: 10.1016/j.jprot.2014.10.002.
    1. Braud S., Bon C., Wisner A. Snake venom proteins acting on hemostasis. Biochimie. 2000;82(9-10):851–859. doi: 10.1016/S0300-9084(00)01178-0.
    1. Gutiérrez J. M., Rucavado A., Escalante T., et al. Unresolved issues in the understanding of the pathogenesis of local tissue damage induced by snake venoms. Toxicon. 2018;148:123–131. doi: 10.1016/j.toxicon.2018.04.016.
    1. Arias A. S., Rucavado A., Gutiérrez J. M. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon. 2017;132:40–49. doi: 10.1016/j.toxicon.2017.04.001.
    1. Villalta-Romero F., Gortat A., Herrera A. E., et al. Identification of new snake venom metalloproteinase inhibitors using compound screening and rational peptide design. ACS Medicinal Chemistry Letters. 2012;3(7):540–543. doi: 10.1021/ml300068r.
    1. Ferreira F. B., Pereira T. M., Souza D. L. N., et al. Structure-Based Discovery of Thiosemicarbazone Metalloproteinase Inhibitors for Hemorrhage Treatment in Snakebites. ACS Medicinal Chemistry Letters. 2017;8(11):1136–1141. doi: 10.1021/acsmedchemlett.7b00186.
    1. Ainsworth S., Slagboom J., Alomran N., et al. The paraspecific neutralisation of snake venom induced coagulopathy by antivenoms. Communications Biology. 2018;1(1) doi: 10.1038/s42003-018-0039-1.
    1. Yuksel M. Gabexate Mesilate, a Synthetic Protease Inhibitor, Inhibits Lipopolysaccharide-Induced Tumor Necrosis Factor-alpha Production by Inhibiting Activation of Both Nuclear Factor-kappa B and Activator Protein-1 in Human Monocytes. The Journal of Pharmacology and Experimental Therapeutics. 305(1):298–305. doi: 10.1124/jpet.102.041988.
    1. Vaiyapuri S., Thiyagarajan N., Hutchinson E. G., Gibbins J. M. Sequence and phylogenetic analysis of viper venom serine proteases. Bioinformation. 2012;8(16):763–772. doi: 10.6026/97320630008563.
    1. Vaiyapuri S., Wagstaff S. C., Harrison R. A., Gibbins J. M., Hutchinson E. G. Evolutionary analysis of novel serine proteases in the Venom Gland transcriptome of Bitis gabonica rhinoceros. PLoS ONE. 2011;6(6) doi: 10.1371/journal.pone.0021532.e21532
    1. Bustillo S., García-Denegri M. E., Gay C., et al. Phospholipase A2 enhances the endothelial cell detachment effect of a snake venom metalloproteinase in the absence of catalysis. Chemico-Biological Interactions. 2015;240:30–36. doi: 10.1016/j.cbi.2015.08.002.
    1. Anil A., Singh S., Bhalla A., Sharma N., Agarwal R., Simpson I. D. Role of neostigmine and polyvalent antivenom in Indian common krait (Bungarus caeruleus) bite. Journal of Infection and Public Health. 2010;3(2):83–87. doi: 10.1016/j.jiph.2010.01.002.
    1. Currie B., Fitzmaurice M., Oakley J. Resolution of neurotoxicity with anticholinesterase therapy in death-adder envenomation. Medical Journal of Australia. 1988;148(10):522–525.
    1. Watt G., Theakston R. D. G., Hayes C. G., et al. Positive Response to Edrophonium in Patients with Neurotoxic Envenoming by Cobras (Naja naja philippinensis) The New England Journal of Medicine. 1986;315(23):1444–1448. doi: 10.1056/NEJM198612043152303.
    1. van Helden D. F., Thomas P. A., Dosen P. J., Imtiaz M. S., Laver D. R., Isbister G. K. Pharmacological Approaches That Slow Lymphatic Flow As a Snakebite First Aid. PLOS Neglected Tropical Diseases. 2014;8(2) doi: 10.1371/journal.pntd.0002722.e2722
    1. Hughes J. P., Rees S. S., Kalindjian S. B., Philpott K. L. Principles of early drug discovery. British Journal of Pharmacology. 2011;162(6):1239–1249. doi: 10.1111/j.1476-5381.2010.01127.x.
    1. Brown N. I., Lalloo D. G. Consequences of Neglect: Analysis of the Sub-Saharan African Snake Antivenom Market and the Global Context. PLOS Neglected Tropical Diseases. 2012;6(6):p. e1670. doi: 10.1371/journal.pntd.0001670.
    1. Smith R. B. Repositioned drugs: integrating intellectual property and regulatory strategies. Drug Discovery Today: Therapeutic Strategies. 2011;8(3-4):131–137. doi: 10.1016/j.ddstr.2011.06.008.
    1. Evens R. P. Drug and biological development: from molecule to product and beyond. Boston, MA: Springer US; 2007.
    1. Magrioti V., Kokotos G. Phospholipase A2 inhibitors for the treatment of inflammatory diseases: A patent review (2010-present) Expert Opinion on Therapeutic Patents. 2013;23(3):333–344. doi: 10.1517/13543776.2013.754425.
    1. Kokotou M. G., Limnios D., Nikolaou A., Psarra A., Kokotos G. Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016) Expert Opinion on Therapeutic Patents. 2017;27(2):217–225. doi: 10.1080/13543776.2017.1246540.
    1. Dennis E. A., Cao J., Hsu Y.-H., Magrioti V., Kokotos G. Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chemical Reviews. 2011;111(10):6130–6185. doi: 10.1021/cr200085w.
    1. Karakas M., Koenig W. Varespladib methyl, an oral phospholipase A2 inhibitor for the potential treatment of coronary artery disease. IDrugs. 2009;12(9):585–592.
    1. Styles L. A., Aarsman A. J., Vichinsky E. P., Kuypers F. A. Secretory phospholipase A2 predicts impending acute chest syndrome in sickle cell disease. Blood. 2000;96(9):3276–3278.
    1. Nicholls S. J., Kastelein J. J. P., Schwartz G. G., et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: The VISTA-16 randomized clinical trial. Journal of the American Medical Association. 2014;311(3):252–262. doi: 10.1001/jama.2013.282836.
    1. Kluwer W. Varespladib. American Journal Cardiovascular Drugs. 2011;11(2):137–143. doi: 10.2165/11533650-000000000-00000.
    1. Price J. A. Microplate fluorescence protease assays test the inhibition of select North American snake venoms' activities with an anti-proteinase library. Toxicon. 2015;103:145–154. doi: 10.1016/j.toxicon.2015.06.020.
    1. Sharma N., Chauhan S., Faruqi S., Bhat P., Varma S. Snake envenomation in a north Indian hospital. Emergency Medicine Journal. 2005;22(2):118–120. doi: 10.1136/emj.2003.008458.
    1. Wang Y., Zhang J., Zhang D., Xiao H., Xiong S., Huang C. Exploration of the Inhibitory Potential of Varespladib for Snakebite Envenomation. Molecules. 2018;23(2):p. 391. doi: 10.3390/molecules23020391.
    1. Price J. A. A colorimetric assay for measuring phospholipase A2 degradation of phosphatidylcholine at physiological pH. Journal of Biochemical and Biophysical Methods. 2007;70(3):441–444. doi: 10.1016/j.jbbm.2006.10.008.
    1. Wang W.-J., Shih C.-H., Huang T.-F. A novel P-I class metalloproteinase with broad substrate-cleaving activity, agkislysin, from Agkistrodon acutus venom. Biochemical and Biophysical Research Communications. 2004;324(1):224–230. doi: 10.1016/j.bbrc.2004.09.031.
    1. Gutiérrez J. M., Sanz L., Escolano J., et al. Snake venomics of the lesser antillean pit vipers bothrops caribbaeus and Bothrops lanceolatus: Correlation with toxicological activities and immunoreactivity of a heterologous antivenom. Journal of Proteome Research. 2008;7(10):4396–4408. doi: 10.1021/pr8003826.
    1. Maduwage K., Silva A., O'Leary M. A., Hodgson W. C., Isbister G. K. Efficacy of Indian polyvalent snake antivenoms against Sri Lankan snake venoms: Lethality studies or clinically focussed in vitro studies. Scientific Reports. 2016;6
    1. Warrell D. A., Gutiérrez J. M., Calvete J. J., Williams D. New approaches amp; technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian Journal of Medical Research. 2013;138:38–59.
    1. Theakston R. D. G., Reid H. A. Development of simple standard assay procedures for the characterization of snake venoms. Bulletin of the World Health Organization. 1983;61(6):949–956.
    1. Gené J., Roy A., Rojas G., Gutiérrez J., Cerdas L. Comparative study on coagulant, defibrinating, fibrinolytic and fibrinogenolytic activities of Costa Rican crotaline snake venoms and their neutralization by a polyvalent antivenom. Toxicon. 1989;27(8):841–848. doi: 10.1016/0041-0101(89)90096-2.
    1. Escalante T., Núñez J., Moura Da Silva A. M., Rucavado A., Theakston R. D. G., Gutiérrez J. M. Pulmonary hemorrhage induced by jararhagin, a metalloproteinase from Bothrops jararaca snake venom. Toxicology and Applied Pharmacology. 2003;193(1):17–28. doi: 10.1016/S0041-008X(03)00337-5.
    1. Gutiérrez J. M., León G., Rojas G., Lomonte B., Rucavado A., Chaves F. Neutralization of local tissue damage induced by Bothrops asper (terciopelo) snake venom. Toxicon. 1998;36(11):1529–1538. doi: 10.1016/S0041-0101(98)00145-7.
    1. Larréché S., Jean F., Benois A., et al. Thromboelastographic study of the snakebite-related coagulopathy in Djibouti. Blood Coagulation & Fibrinolysis. 2018:p. 1. doi: 10.1097/MBC.0000000000000702.
    1. WHO Expert Committee on Specifications for Pharmaceutical Preparations WHO guidelines for stability testing of pharmaceutical products containing well established drug substances in conventional dosage forms Available online. .
    1. Ogunfowokan O. Bite-to-hospital time and morbidity in victims of viper bite in a rural hospital in Nigeria. African Journal of Primary Health Care & Family Medicine. 2012;4(1) doi: 10.4102/phcfm.v4i1.371.
    1. Sarkhel S., Ghosh R., Mana K., Gantait K. A hospital based epidemiological study of snakebite in Paschim Medinipur district, West Bengal, India. Toxicology Reports. 2017;4:415–419. doi: 10.1016/j.toxrep.2017.07.007.

Source: PubMed

3
S'abonner