Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis

Shashank Ghai, Ishan Ghai, Gerd Schmitz, Alfred O Effenberg, Shashank Ghai, Ishan Ghai, Gerd Schmitz, Alfred O Effenberg

Abstract

The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients' is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson's disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
PRISMA flow chart for the inclusion of studies.
Figure 2
Figure 2
Funnel plot for Hedge’s g and standardized effect for each value in the meta-analysis. Each of the effect is represented in the plot as a circle. Funnel boundaries represent area where 95% of the effects are expected to lie if there were no publication biases. The vertical line represents the mean standardized effect of zero. Absence of publication bias is represented by symmetrically distributed effects around the line.
Figure 3
Figure 3
Risk of bias across studies.
Figure 4
Figure 4
Forest plot illustrating individual studies evaluating the effects of rhythmic auditory cueing on gait velocity among parkinsonian patients. Weighted effect sizes; Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect size indicated reduction in gait velocity; a positive effect size indicated enhancement in gait velocity. (FP: Fast paced, SP: Slow paced, Fz: Freezers, NFz: Non-Freezers, ON: with medications, OFF: without medications, INC: Inclined training, T: Treadmill training, FP T: Fast paced training, I: Isosynchrounous cueing, Rn: Random, BL Biological variability, RAC: Rhythmic auditory cueing).
Figure 5
Figure 5
Forest plot illustrating individual studies evaluating the effects of rhythmic auditory cueing on stride length among parkinsonian patients. Weighted effect sizes; Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect size indicated reduction in stride length; a positive effect size indicated enhancement in stride length. (FP: Fast paced, SP: Slow paced, Fz: Freezers, NFz: Non-Freezers, ON: with medications, OFF: without medications, INC: Inclined training, T: Treadmill training, FP T: Fast paced training, I: Isosynchrounous cueing, Rn: Random, BL Biological variability, RAC: Rhythmic auditory cueing).
Figure 6
Figure 6
Forest plot illustrating individual studies evaluating the effects of rhythmic auditory cueing on cadence among parkinsonian patients. Weighted effect sizes; Hedge’s g (boxes) and 95% C.I (whiskers) are presented, demonstrating repositioning errors for individual studies. The (Diamond) represents pooled effect sizes and 95% CI. A negative effect size indicated reduction in step frequency; a positive effect size indicated enhancement in step frequency. (FP: Fast paced, SP: Slow paced, Fz: Freezers, NFz: Non-Freezers, ON: with medications, OFF: without medications, INC: Inclined training, T: Treadmill training, FP T: Fast paced training, I: Isosynchrounous cueing, Rn: Random, BL Biological variability, RAC: Rhythmic auditory cueing, step frequency: number of steps/minute).

References

    1. Masters RSW, Maxwell J. The theory of reinvestment. Int. Rev. Sport. Exer. Psychol. 2008;1:160–183. doi: 10.1080/17509840802287218.
    1. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 1988;319:1701–1707. doi: 10.1056/NEJM198812293192604.
    1. Boudarham J, et al. Variations in Kinematics during Clinical Gait Analysis in Stroke Patients. PLoS. ONE. 2013;8:e66421. doi: 10.1371/journal.pone.0066421.
    1. Ghai S, Ghai I, Effenberg AO. Effects of dual tasks and dual-task training on postural stability: a systematic review and metaanalysis. Clin. Interv. Aging. 2017;12:557–577. doi: 10.2147/CIA.S125201.
    1. Ghai S, Driller M, Ghai I. Effects of joint stabilizers on proprioception and stability: A systematic review and meta-analysis. Phys. Ther. Sport. 2017;25:65–75. doi: 10.1016/j.ptsp.2016.05.006.
    1. Schlicht J, Camaione DN, Owen SV. Effect of intense strength training on standing balance, walking speed, and sit-to-stand performance in older adults. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2001;56:M281–M286. doi: 10.1093/gerona/56.5.M281.
    1. Onder G, et al. Change in physical performance over time in older women The Women’s Health and Aging Study. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2002;57:M289–M293. doi: 10.1093/gerona/57.5.M289.
    1. Cromwell RL, Newton RA. Relationship between balance and gait stability in healthy older adults. J. Aging. Phys. Act. 2004;12:90–100. doi: 10.1123/japa.12.1.90.
    1. Bhatt T, Espy D, Yang F, Pai Y-C. Dynamic gait stability, clinical correlates, and prognosis of falls among community-dwelling older adults. Arch. Phys. Med. Rehabil. 2011;92:799–805. doi: 10.1016/j.apmr.2010.12.032.
    1. Herman T, Giladi N, Gruendlinger L, Hausdorff JM. Six weeks of intensive treadmill training improves gait and quality of life in patients with Parkinson’s disease: a pilot study. Arch. Phys. Med. Rehabil. 2007;88:1154–1158. doi: 10.1016/j.apmr.2007.05.015.
    1. Lim I, et al. Does cueing training improve physical activity in patients with Parkinson’s disease? Neurorehabil. Neural. Repair. 2010;24:469–477. doi: 10.1177/1545968309356294.
    1. Gelb DJ, Oliver E, Gilman S. Diagnostic criteria for Parkinson disease. Arch. Neurol. 1999;56:33–39. doi: 10.1001/archneur.56.1.33.
    1. Morris ME. Gait Disorders in Parkinson’s Disease: A Framework for Physical Therapy Practice. J. Neurol. Phys. Ther. 1997;21:125–131.
    1. Jankovic, J. & Tolosa, E. Parkinson’s disease and movement disorders. (Lippincott Williams & Wilkins, 2007).
    1. Asmus F, Huber H, Gasser T, Schöls L. Kick and rush: paradoxical kinesia in Parkinson disease. Neurology. 2008;71:695. doi: 10.1212/01.wnl.0000324618.88710.30.
    1. Lexell J. Evidence for nervous system degeneration with advancing age. J. Nutr. 1997;127:1011S–1013S.
    1. Cameron MH, Wagner JM. Gait abnormalities in multiple sclerosis: pathogenesis, evaluation, and advances in treatment. Curr. Neurol. Neurosci. Rep. 2011;11:507–515. doi: 10.1007/s11910-011-0214-y.
    1. Cromwell RL, Newton RA, Forrest G. Influence of vision on head stabilization strategies in older adults during walking. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2002;57:M442–M448. doi: 10.1093/gerona/57.7.M442.
    1. Medeiros H, Bd. O, Araújo DSMSd, Araújo CGSd. Age-related mobility loss is joint-specific: an analysis from 6,000 Flexitest results. Age. 2013;35:2399–2407. doi: 10.1007/s11357-013-9525-z.
    1. Ghai, S., Ghai, I., & Effenberg, A. O. Effect of Rhythmic Auditory Cueing on Aging Gait: A Systematic Review and Meta-Analysis. Aging. Dis. 131–200, 10.14336/ad.2017.1031 (2017).
    1. Hausdorff JM. Gait Dynamics, Fractals and Falls: Finding Meaning in the Stride-to-Stride Fluctuations of Human Walking. Hum. Mov. Sci. 2007;26:555–589. doi: 10.1016/j.humov.2007.05.003.
    1. Callisaya ML, et al. Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age. Ageing. 2011;40:481–487. doi: 10.1093/ageing/afr055.
    1. Schaefer S, Schellenbach M, Lindenberger U, Woollacott M. Walking in high-risk settings: Do older adults still prioritize gait when distracted by a cognitive task? Exp. Brain. Res. 2015;233:79–88. doi: 10.1007/s00221-014-4093-8.
    1. Ghai, S., Driller, M. & Masters, R. The influence of below-knee compression garments on knee-joint proprioception. Gait. Posture. in press, 10.1016/j.gaitpost.2016.08.008 (2016).
    1. Masters RSW. Knowledge, knerves and know‐how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure. Brit J Psychol. 1992;83:343–358. doi: 10.1111/j.2044-8295.1992.tb02446.x.
    1. Ghai, S. Proprioception and Performance: The role of below-knee compression garments and secondary tasks (Master’s dissertation, University of Waikato) (2016).
    1. Talelli P, Ewas A, Waddingham W, Rothwell J, Ward N. Neural correlates of age-related changes in cortical neurophysiology. Neuroimage. 2008;40:1772–1781. doi: 10.1016/j.neuroimage.2008.01.039.
    1. Miller RA, Thaut MH, McIntosh GC, Rice RR. Components of EMG symmetry and variability in parkinsonian and healthy elderly gait. Electroencephalogr. Clin. Neurophysiol. 1996;101:1–7. doi: 10.1016/0013-4694(95)00209-X.
    1. Hong M, Perlmutter JS, Earhart GM. A kinematic and electromyographic analysis of turning in people with Parkinson disease. Neurorehabil. Neural. Repair. 2009;23:166–176. doi: 10.1177/1545968308320639.
    1. Nieuwboer, A. et al. The short-term effects of different cueing modalities on turn speed in people with Parkinson’s disease. Neurorehabil. Neural. Repair. 23, 831–836, doi:10.1177/1545968309337136 (2009).
    1. Arias P, Cudeiro J. Effect of rhythmic auditory stimulation on gait in Parkinsonian patients with and without freezing of gait. PLoS. ONE. 2010;5:e9675. doi: 10.1371/journal.pone.0009675.
    1. Lawrence BJ, Gasson N, Kane R, Bucks RS, Loftus AM. Activities of Daily Living, Depression, and Quality of Life in Parkinson’s Disease. PLoS. ONE. 2014;9:e102294. doi: 10.1371/journal.pone.0102294.
    1. de Rooij IJ, van de Port IG, Meijer JG. Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis. Phys. Ther. 2016;96:1905–1918. doi: 10.2522/ptj.20160054.
    1. Pizzolato, C. et al. Biofeedback for gait retraining based on real-time estimation of tibiofemoral joint contact forces. IEEE. Trans. Neural. Syst. Rehabil. Eng., 10.1109/tnsre.2017.2683488 (2017).
    1. Eng JJ, Tang PF. Gait training strategies to optimize walking ability in people with stroke: A synthesis of the evidence. Expert. Rev. Neurother. 2007;7:1417–1436. doi: 10.1586/14737175.7.10.1417.
    1. Bastian A, Keller JL. A Home Balance Exercise Program Improves Walking in People with Cerebellar Ataxia. Neurorehabil. Neural. Repair. 2014;28:770–778. doi: 10.1177/1545968314522350.
    1. Hackney ME, Earhart GM. Effects of Dance on Movement Control in Parkinson’s Disease: A Comparison of Argentine Tango and American Ballroom. J. Rehabil. Med.: Off. J. UEMS Euro. Board Phys. Rehabil. Med. 2009;41:475–481. doi: 10.2340/16501977-0362.
    1. Mehrholz, J. et al. Treadmill training for patients with Parkinson’s disease. Cochrane. Database. Syst. Rev., Cd007830, 10.1002/14651858.CD007830.pub3 (2015).
    1. Thaut MH, Abiru M. Rhythmic auditory stimulation in rehabilitation of movement disorders: a review of current research. Music Perception: An Interdisciplinary Journal. 2010;27:263–269. doi: 10.1525/mp.2010.27.4.263.
    1. Group PMC. Long-term effectiveness of dopamine agonists and monoamine oxidase B inhibitors compared with levodopa as initial treatment for Parkinson’s disease (PD MED): a large, open-label, pragmatic randomised trial. The Lancet. 2014;384:1196–1205. doi: 10.1016/S0140-6736(14)60683-8.
    1. Tedeschi G, Sasso E, Marshall RW, Bonavita V. Tremor in Parkinson disease: acute response to oral levodopa. Ital. J. Neurol. Sci. 1990;11:259–263. doi: 10.1007/BF02333855.
    1. Rocha PA, Porfírio GM, Ferraz HB, Trevisani VF. Effects of external cues on gait parameters of Parkinson’s disease patients: a systematic review. Clin. Neurol. Neurosurg. 2014;124:127–134. doi: 10.1016/j.clineuro.2014.06.026.
    1. Spaulding SJ, et al. Cueing and gait improvement among people with Parkinson’s disease: a meta-analysis. Arch. Phys. Med. Rehabil. 2013;94:562–570. doi: 10.1016/j.apmr.2012.10.026.
    1. Maculewicz J, Erkut C, Serafin S. An investigation on the impact of auditory and haptic feedback on rhythmic walking interactions. Int. J. Hum. Comput. Stud. 2016;85:40–46. doi: 10.1016/j.ijhcs.2015.07.003.
    1. Nombela C, Hughes LE, Owen AM, Grahn JA. Into the groove: can rhythm influence Parkinson’s disease? Neurosci. Biobehav. Rev. 2013;37:2564–2570. doi: 10.1016/j.neubiorev.2013.08.003.
    1. Thaut, M. H. Rhythm, music, and the brain: Scientific foundations and clinical applications. Vol. 7 (Routledge, 2005).
    1. van den Heuvel MR, Daffertshofer A, Beek PJ, Kwakkel G, van Wegen EE. The effects of visual feedback during a rhythmic weight-shifting task in patients with Parkinson’s disease. Gait. Posture. 2016;48:140–145. doi: 10.1016/j.gaitpost.2016.03.020.
    1. Raglio, A. Music therapy interventions in Parkinson’s disease: the state-of-the-art. Front. Neurol. 6 (2015).
    1. Shelton J, Kumar GP. Comparison between auditory and visual simple reaction times. Neurosci. Med. 2010;1:30. doi: 10.4236/nm.2010.11004.
    1. Thaut M, Kenyon G, Schauer M, McIntosh G. The connection between rhythmicity and brain function. IEEE Eng. Med. Biol. Magazine. 1999;18:101–108. doi: 10.1109/51.752991.
    1. Ermolaeva VY, Borgest A. Intercortical connections of the auditory areas with the motor area. Neurosci. Behav. Physiol. 1980;10:210–215. doi: 10.1007/BF01182212.
    1. Felix RA, Fridberger A, Leijon S, Berrebi AS, Magnusson AK. Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J. Neurosci. 2011;31:12566–12578. doi: 10.1523/JNEUROSCI.2450-11.2011.
    1. Thaut MH, McIntosh GC, Hoemberg V. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system. Front. Psychol. 2014;5:1185.
    1. Butler JS, Foxe JJ, Fiebelkorn IC, Mercier MR, Molholm S. Multisensory representation of frequency across audition and touch: high density electrical mapping reveals early sensory-perceptual coupling. J. Neurosci. 2012;32:15338–15344. doi: 10.1523/JNEUROSCI.1796-12.2012.
    1. Lega C, Vecchi T, D’Angelo E, Cattaneo ZA. TMS investigation on the role of the cerebellum in pitch and timbre discrimination. Cerebellum & Ataxias. 2016;3:6. doi: 10.1186/s40673-016-0044-4.
    1. Bukowska, A. A., Krężałek, P., Mirek, E., Bujas, P. & Marchewka, A. Neurologic music therapy training for mobility and stability rehabilitation with Parkinson’s disease–A pilot study. Front. Hum. Neurosci. 9 (2015).
    1. Effenberg AO, Fehse U, Schmitz G, Krueger B, Mechling H. Movement sonification: Effects on motor learning beyond rhythmic adjustments. Front. Neurosci. 2016;10:219. doi: 10.3389/fnins.2016.00219.
    1. Yoo GE, Kim SJ. Rhythmic auditory cueing in motor rehabilitation for stroke patients: systematic review and meta-analysis. J. Music. Ther. 2016;53:149–177. doi: 10.1093/jmt/thw003.
    1. Kim SJ, et al. Changes in gait patterns with rhythmic auditory stimulation in adults with cerebral palsy. Neuro. Rehabil. 2011;29:233–241.
    1. Ghai, S., Ghai, I. & Effenberg, A. O. Effect of rhythmic auditory cueing on gait in Cerebral palsy: A systematic review and metaanalysis. Neuropsychiatr. Dis. Treat., 1–17 (2017) Accepted, In press.
    1. Thaut MH, Miltner R, Lange HW, Hurt CP, Hoemberg V. Velocity modulation and rhythmic synchronization of gait in Huntington’s disease. Movement Disorders. 1999;14:808–819. doi: 10.1002/1531-8257(199909)14:5<808::AID-MDS1014>;2-J.
    1. Baram Y, Miller A. Auditory feedback control for improvement of gait in patients with Multiple Sclerosis. J. Neurol. Sci. 2007;254:90–94. doi: 10.1016/j.jns.2007.01.003.
    1. Shannon K. The effect of rhythmic auditory stimulation on the gait parameters of patients with incomplete spinal cord injury: an exploratory pilot study. Int. J. Rehabil. Res. 2008;31:155–157. doi: 10.1097/MRR.0b013e3282fc0f44.
    1. Thaut MH. Neural basis of rhythmic timing networks in the human brain. Ann. N. Y. Acad. Sci. 2003;999:364–373. doi: 10.1196/annals.1284.044.
    1. Fujioka T, Trainor LJ, Large EW, Ross B. Internalized timing of isochronous sounds is represented in neuromagnetic beta oscillations. J. Neurosci. 2012;32:1791–1802. doi: 10.1523/JNEUROSCI.4107-11.2012.
    1. Schmitz G, et al. Observation of sonified movements engages a basal ganglia frontocortical network. BMC. Neurosci. 2013;14:1. doi: 10.1186/1471-2202-14-32.
    1. Heremans E, et al. Cued motor imagery in patients with multiple sclerosis. Neuroscience. 2012;206:115–121. doi: 10.1016/j.neuroscience.2011.12.060.
    1. Heremans E, et al. External cueing improves motor imagery quality in patients with Parkinson disease. Neurorehabil. Neural. Repair. 2012;26:27–35. doi: 10.1177/1545968311411055.
    1. Miller RA, Thaut MH, McIntosh GC, Rice RR. Components of EMG symmetry and variability in parkinsonian and healthy elderly gait. Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control. 1996;101:1–7. doi: 10.1016/0013-4694(95)00209-X.
    1. Luft AR, et al. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. JAMA. 2004;292:1853–1861. doi: 10.1001/jama.292.15.1853.
    1. Rochester L, Baker K, Nieuwboer A, Burn D. Targeting dopa‐sensitive and dopa‐resistant gait dysfunction in Parkinson’s disease: Selective responses to internal and external cues. Movement Disorders. 2011;26:430–435. doi: 10.1002/mds.23450.
    1. Raglio A. Music Therapy Interventions in Parkinson’s Disease: The State-of-the-Art. Front. Neurol. 2015;6:185. doi: 10.3389/fneur.2015.00185.
    1. Ghai, S., Schmitz, G., Hwang, T.-H. & Effenberg, A. O. In 22nd Annunal Congress of European College of SportsScience. (edsFerrauti, A. et al.) 36.
    1. Lim I, et al. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: a systematic review. Clin. Rehabil. 2005;19:695–713. doi: 10.1191/0269215505cr906oa.
    1. Liberati A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann. Intern. Med. 2009;151:W-65–W-94. doi: 10.7326/0003-4819-151-4-200908180-00136.
    1. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Australian Journal of Physiotherapy. 2009;55:129–133. doi: 10.1016/S0004-9514(09)70043-1.
    1. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003;83:713–721.
    1. Teasell, Robert, N. Bayona, & J. Bitensky. Background concepts in stroke rehabilitation. EBRSR: Evidence-Based Review of Stroke Rehabilitation (2008).
    1. Ramsey L, Winder RJ, McVeigh JG. The effectiveness of working wrist splints in adults with rheumatoid arthritis: A mixed methods systematic review. J. Rehabil. Med. 2014;46:481–492. doi: 10.2340/16501977-1804.
    1. Borenstein M, Hedges LV, Higgins J, Rothstein HR. A basic introduction to fixed‐effect and random‐effects models for meta‐analysis. Res. Synthesis Met. 2010;1:97–111. doi: 10.1002/jrsm.12.
    1. Higgins, J. P. & Green, S. Cochrane handbook for systematic reviews of interventions. Vol. 4 (John Wiley & Sons, 2011).
    1. Cumming, G. Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. (Routledge, 2013).
    1. Cohen, J. Statistical power analysis for the behavioral sciences. 2nd edn, (L, Erlbaum Associates, 1988).
    1. Rochester L, Burn DJ, Woods G, Godwin J, Nieuwboer A. Does auditory rhythmical cueing improve gait in people with Parkinson’s disease and cognitive impairment? A feasibility study. Movement Disorders. 2009;24:839–845. doi: 10.1002/mds.22400.
    1. Chaiwanichsiri, D., Wangno, W., Kitisomprayoonkul, W. & Bhiyadayasiri, R. Treadmill training with music cueing: a new approach for Parkinson’s gait facilitation. Asian. Biomed.5(5), 649–654, 10.5372/1905-7415.0505.086 (2011).
    1. Willems A-M, et al. The use of rhythmic auditory cues to influence gait in patients with Parkinson’s disease, the differential effect for freezers and non-freezers, an explorative study. Disabil. Rehabil. 2006;28:721–728. doi: 10.1080/09638280500386569.
    1. Willems AM, et al. Turning in Parkinson’s disease patients and controls: the effect of auditory cues. Movement disorders. 2007;22:1871–1878. doi: 10.1002/mds.21445.
    1. Rochester L, et al. Evidence for motor learning in Parkinson’s disease: acquisition, automaticity and retention of cued gait performance after training with external rhythmical cues. Brain. Res. 2010;1319:103–111. doi: 10.1016/j.brainres.2010.01.001.
    1. Nieuwboer A, et al. Cueing training in the home improves gait-related mobility in Parkinson’s disease: the RESCUE trial. J. Neurol. Neurosurg. Psych. 2007;78:134–140. doi: 10.1136/jnnp.200X.097923.
    1. Chen P-H, et al. Walking Turns in Parkinson’s Disease Patients with Freezing of Gait: The Short-term Effects of Different Cueing Strategies. Int. J. Gerontol. 2016;10:71–75. doi: 10.1016/j.ijge.2014.09.004.
    1. Lopez WO, et al. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson’s disease. Hum. Mov. Sci. 2014;37:147–156. doi: 10.1016/j.humov.2014.08.001.
    1. Espay AJ, et al. At-home training with closed-loop augmented-reality cueing device for improving gait in patients with Parkinson disease. J. Rehabil. Res. Dev. 2010;47:573. doi: 10.1682/JRRD.2009.10.0165.
    1. Howe TE, Lövgreen B, Cody FW, Ashton V, Oldham J. Auditory cues can modify the gait of persons with early-stage Parkinson’s disease: a method for enhancing parkinsonian walking performance? Clin. Rehabil. 2003;17:363–367. doi: 10.1191/0269215503cr621oa.
    1. Dotov D, et al. Biologically-variable rhythmic auditory cues are superior to isochronous cues in fostering natural gait variability in Parkinson’s disease. Gait. Posture. 2017;51:64–69. doi: 10.1016/j.gaitpost.2016.09.020.
    1. Young WR, Rodger MW, Craig CM. Auditory observation of stepping actions can cue both spatial and temporal components of gait in Parkinson’s disease patients. Neuropsychologia. 2014;57:140–153. doi: 10.1016/j.neuropsychologia.2014.03.009.
    1. Bella, S. D. et al. Gait improvement via rhythmic stimulation in Parkinson’s disease is linked to rhythmic skills. Sci. Rep.7, 42005, 10.1038/srep42005 (2017).
    1. Benoit C-E, et al. Musically cued gait-training improves both perceptual and motor timing in Parkinson’s disease. Front. Hum. Neurosci. 2014;8:494. doi: 10.3389/fnhum.2014.00494.
    1. de Bruin, N. et al. Walking with music is a safe and viable tool for gait training in Parkinson’s disease: the effect of a 13-week feasibility study on single and dual task walking. Parkinsons. Dis.2010 (2010).
    1. Elston J, Honan W, Powell R, Gormley J, Stein K. Do metronomes improve the quality of life in people with Parkinson’s disease? A pragmatic, single-blind, randomized cross-over trial. Clin. Rehabil. 2010;24:523–532. doi: 10.1177/0269215509360646.
    1. Ma H-I, Hwang W-J, Lin K-C. The effects of two different auditory stimuli on functional arm movement in persons with Parkinson’s disease: a dual-task paradigm. Clin. Rehabil. 2009;23:229–237. doi: 10.1177/0269215508098896.
    1. Jiang Y, Norman KE. Effects of visual and auditory cues on gait initiation in people with Parkinson’s disease. Clin. Rehabil. 2006;20:36–45. doi: 10.1191/0269215506cr925oa.
    1. del Olmo MF, Arias P, Furio M, Pozo M, Cudeiro J. Evaluation of the effect of training using auditory stimulation on rhythmic movement in Parkinsonian patients—a combined motor and [18 F]-FDG PET study. Parkinsonism. Relat. Disord. 2006;12:155–164. doi: 10.1016/j.parkreldis.2005.11.002.
    1. Bolier L, et al. Positive psychology interventions: a meta-analysis of randomized controlled studies. BMC. Public. Health. 2013;13:119. doi: 10.1186/1471-2458-13-119.
    1. Arias P, Cudeiro J. Effects of rhythmic sensory stimulation (auditory, visual) on gait in Parkinson’s disease patients. Exp. Brain. Res. 2008;186:589–601. doi: 10.1007/s00221-007-1263-y.
    1. Picelli A, et al. Three-dimensional motion analysis of the effects of auditory cueing on gait pattern in patients with Parkinson’s disease: a preliminary investigation. Neurol. Sci. 2010;31:423–430. doi: 10.1007/s10072-010-0228-2.
    1. Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson’s disease with freezing: a comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov. Disord. 2009;24:1139–1143. doi: 10.1002/mds.22491.
    1. McIntosh GC, Brown SH, Rice RR, Thaut MH. Rhythmic auditory-motor facilitation of gait patterns in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psych. 1997;62:22–26. doi: 10.1136/jnnp.62.1.22.
    1. Thaut MH, et al. Rhythmic auditory stimulation in gait training for Parkinson’s disease patients. Movement disorders: official journal of the Movement Disorder Society. 1996;11:193–200. doi: 10.1002/mds.870110213.
    1. Lohnes CA, Earhart GM. The impact of attentional, auditory, and combined cues on walking during single and cognitive dual tasks in Parkinson disease. Gait. Posture. 2011;33:478–483. doi: 10.1016/j.gaitpost.2010.12.029.
    1. Chester EL, Turnbull GI, Kozey J. The effect of auditory cues on gait at different stages of parkinson’s disease and during “on”/“off” fluctuations: a preliminary study. Top. Geriatr. Rehabil. 2006;22:187–195. doi: 10.1097/00013614-200604000-00010.
    1. Bryant M, Rintala D, Lai E, Protas E. An evaluation of self-administration of auditory cueing to improve gait in people with Parkinson’s disease. Clin. Rehabil. 2009;23:1078–1085. doi: 10.1177/0269215509337465.
    1. del Olmo MF, Cudeiro J. Temporal variability of gait in Parkinson disease: Effectsof a rehabilitation programme based on rhythmic sound cues. Parkinsonism. Relat. Disord. 2005;11:25–33. doi: 10.1016/j.parkreldis.2004.09.002.
    1. Harro C, et al. The effects of speed-dependent treadmill training and rhythmic auditory-cued overground walking on balance function, fall incidence, and quality of life in individuals with idiopathic Parkinson’s disease: A randomized controlled trial. NeuroRehabilitation. 2014;34:541–556.
    1. Hausdorff JM, et al. Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Euro. J. Neurosci. 2007;26:2369–2375. doi: 10.1111/j.1460-9568.2007.05810.x.
    1. Suteerawattananon M, Morris G, Etnyre B, Jankovic J, Protas E. Effects of visual and auditory cues on gait in individuals with Parkinson’s disease. J. Neurol. Sci. 2004;219:63–69. doi: 10.1016/j.jns.2003.12.007.
    1. Baker K, Rochester L, Nieuwboer A. The immediate effect of attentional, auditory, and a combined cue strategy on gait during single and dual tasks in Parkinson’s disease. Arch. Phys. Med. Rehabil. 2007;88:1593–1600. doi: 10.1016/j.apmr.2007.07.026.
    1. Baker K, Rochester L, Nieuwboer A. The effect of cues on gait variability—Reducing the attentional cost of walking in people with Parkinson’s disease. Parkinsonism. Relat. Disord. 2008;14:314–320. doi: 10.1016/j.parkreldis.2007.09.008.
    1. Chen JL, Zatorre RJ, Penhune VB. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage. 2006;32:1771–1781. doi: 10.1016/j.neuroimage.2006.04.207.
    1. Rochester L, et al. The effect of external rhythmic cues (auditory and visual) on walking during a functional task in homes of people with Parkinson’s disease. Arch. Phys. Med. Rehabil. 2005;86:999–1006. doi: 10.1016/j.apmr.2004.10.040.
    1. Nieuwboer A, et al. Impact of a therapeutic cueing program in the home on gait related mobility in Parkinson’s disease. A randomised clinical trial. J. Neurol. Neurosurg. Psychiatry. 2007;78:134–140. doi: 10.1136/jnnp.200X.097923.
    1. Rochester L, et al. The attentional cost of external rhythmical cues and their impact on gait in Parkinson’s disease: effect of cue modality and task complexity. J. Neural. Transm. 2007;114:1243. doi: 10.1007/s00702-007-0756-y.
    1. Pau, M. et al. effects of Physical rehabilitation integrated with rhythmic auditory stimulation on spatio-Temporal and Kinematic Parameters of gait in Parkinson’s Disease. Front. Neurol. 7 (2016).
    1. Song J, et al. Rhythmic auditory stimulation with visual stimuli on motor and balance function of patients with Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci. 2015;19:2001–2007.
    1. Song G-b, Ryu H. J. Effects of gait training with rhythmic auditory stimulation on gait ability in stroke patients. J. Phys. Ther. Sci. 2016;28:1403–1406. doi: 10.1589/jpts.28.1403.
    1. Rochester L, et al. The effect of cueing therapy on single and dual‐task gait in a drug naïve population of people with Parkinson’s disease in northern Tanzania. Mov. Disord. 2010;25:906–911. doi: 10.1002/mds.22978.
    1. De Icco, R. et al. Acute and chronic effect of acoustic and visual cues on gait training in Parkinson’s disease: a randomized, controlled study. Parkinsons. Dis.2015 (2015).
    1. Morris ME, Martin CL, Schenkman ML. Striding out with Parkinson disease: evidence-based physical therapy for gait disorders. Phys. Ther. 2010;90:280. doi: 10.2522/ptj.20090091.
    1. Morris ME, Iansek R, Matyas TA, Summers JJ. The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain. 1994;117:1169–1181. doi: 10.1093/brain/117.5.1169.
    1. Wearden JH, et al. Stimulus timing by people with Parkinson’s disease. Brain. Cogn. 2008;67:264–279. doi: 10.1016/j.bandc.2008.01.010.
    1. Skodda S, Flasskamp A, Schlegel U. Instability of syllable repetition as a model for impaired motor processing: is Parkinson’s disease a “rhythm disorder. J. Neural. Transm. 2010;117:605–612. doi: 10.1007/s00702-010-0390-y.
    1. Thaut MH, McIntosh KW, McIntosh GC, Hoemberg V. Auditory rhythmicity enhances movement and speech motor control in patients with Parkinson’s disease. Funct. Neurol. 2001;16:163–172.
    1. Kotz, S. A. & Schwartze, M. Differential input of the supplementary motor area to a dedicated temporal processing network: functional and clinical implications. Front. Integrat. Neurosci. 5 (2011).
    1. Elsinger CL, et al. Neural basis for impaired time reproduction in Parkinson’s disease: an fMRI study. J. Int. Neuropsychol. Soc. 2003;9:1088–1098. doi: 10.1017/S1355617703970123.
    1. Rubinstein TC, Giladi N, Hausdorff JM. The power of cueing to circumvent dopamine deficits: a review of physical therapy treatment of gait disturbances in Parkinson’s disease. Mov. Disord. 2002;17:1148–1160. doi: 10.1002/mds.10259.
    1. Tierney A, Kraus N. The ability to move to a beat is linked to the consistency of neural responses to sound. Journal of Neuroscience. 2013;33:14981–14988. doi: 10.1523/JNEUROSCI.0612-13.2013.
    1. Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage. 2003;19:764–776. doi: 10.1016/S1053-8119(03)00148-4.
    1. Asanuma H, Keller A. Neuronal mechanisms of motor learning in mammals. Neuroreport. 1991;2:217–224. doi: 10.1097/00001756-199105000-00001.
    1. Suh JH, et al. Effect of rhythmic auditory stimulation on gait and balance in hemiplegic stroke patients. NeuroRehabilitation. 2014;34:193–199.
    1. Torres EB, Heilman KM, Poizner H. Impaired endogenously evoked automated reaching in Parkinson’s disease. J. Neurosci. 2011;31:17848–17863. doi: 10.1523/JNEUROSCI.1150-11.2011.
    1. Rinehart NJ, et al. An examination of movement kinematics in young people with high-functioning autism and Asperger’s disorder: further evidence for a motor planning deficit. J. Autism. Dev. Disord. 2006;36:757–767. doi: 10.1007/s10803-006-0118-x.
    1. Hanakawa, T., Fukuyama, H., Katsumi, Y., Honda, M. & Shibasaki, H. Enhanced lateral premotor activity during paradoxical gait in Parkinson’s disease. Ann. Neurol.45, 329–336 (1999).
    1. Cunnington R, Iansek R, Bradshaw JL, Phillips JG. Movement-related potentials in Parkinson’s disease. Brain: J. Neurol. 1995;118:935–950. doi: 10.1093/brain/118.4.935.
    1. Whitall J, et al. Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms a singleblinded randomized controlled trial. Neurorehabil. Neural. Repair. 2011;25:118–129. doi: 10.1177/1545968310380685.
    1. Ford MP, Malone LA, Nyikos I, Yelisetty R, Bickel CS. Gait training with progressive external auditory cueing in persons with Parkinson’s disease. Arch. Phys. Med. Rehabil. 2010;91:1255–1261. doi: 10.1016/j.apmr.2010.04.012.
    1. Thaut MH, et al. Rhythmic auditory stimulation improves gait more than NDT/Bobath training in near-ambulatory patients early poststroke: a single-blind, randomized trial. Neurorehabil. Neural. Repair. 2007;21:455–459. doi: 10.1177/1545968307300523.
    1. Marsden CD. Problems with long-term levodopa therapy for Parkinson’s disease. Clin. Neuropharmacol. 1994;17(Suppl 2):S32–44.
    1. Curtze C, Nutt JG, Carlson-Kuhta P, Mancini M, Horak FB. Levodopa is a Double-Edged Sword for Balance and Gait in People with Parkinson’s Disease. Mov. Disord. 2015;30:1361–1370. doi: 10.1002/mds.26269.
    1. Bryant MS, Rintala DH, Hou JG, Lai EC, Protas EJ. Effects of Levodopa on Forward and Backward Gait Patterns in Persons with Parkinson’s Disease. NeuroRehabilitation. 2011;29:247–252.
    1. Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL. Gait variability and basal ganglia disorders: Stride‐tostride variations of gait cycle timing in parkinson’s disease and Huntington’s disease. Movement disorders. 1998;13:428–437. doi: 10.1002/mds.870130310.
    1. Schaafsma JD, et al. Gait dynamics in Parkinson’s disease: relationship to Parkinsonian features, falls and response to levodopa. J. Neurol. Sci. 2003;212:47–53. doi: 10.1016/S0022-510X(03)00104-7.
    1. Baltadjieva R, Giladi N, Gruendlinger L, Peretz C, Hausdorff JM. Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur. J. Neurosci. 2006;24:1815–1820. doi: 10.1111/j.1460-9568.2006.05033.x.
    1. Almeida QJ, Frank JS, Roy EA, Patla AE, Jog MS. Dopaminergic modulation of timing control and variability in the gait of Parkinson’s disease. Mov. Disord. 2007;22:1735–1742. doi: 10.1002/mds.21603.
    1. Fahn S. Does levodopa slow or hasten the rate of progression of Parkinson’s disease? J. Neurol. 2005;252(Suppl 4):Iv37–iv42.
    1. Levy G. The relationship of Parkinson disease with aging. Arch. Neurol. 2007;64:1242–1246. doi: 10.1001/archneur.64.9.1242.
    1. Thaut MH, et al. Neurologic music therapy improves executive function and emotional adjustment in traumatic brain injury rehabilitation. Ann. N. Y. Acad. Sci. 2009;1169:406–416. doi: 10.1111/j.1749-6632.2009.04585.x.
    1. Delignières D, Torre K, et al. Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff. J. Appl. Physiol. 2009;106:1272–1279. doi: 10.1152/japplphysiol.90757.2008.
    1. Hove MJ, Suzuki K, Uchitomi H, Orimo S, Miyake Y. Interactive rhythmic auditory stimulation reinstates natural 1/f timing in gait of Parkinson’s patients. PLoS. ONE. 2012;7:e32600. doi: 10.1371/journal.pone.0032600.
    1. Hausdorff JM, et al. Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations. J. Appl. Physiol. 1996;80:1448–1457. doi: 10.1152/jappl.1996.80.5.1448.
    1. Buchecker, M., Wegenkittl, S., Stöggl, T. & Müller, E. Unstable Footwear Affects Magnitude and Structure of Variability in Postural Control. Motor. Control. 1–35 (2017).
    1. Clark JE, Phillips SJ. A longitudinal study of intralimb coordination in the first year of independent walking: a dynamical systems analysis. Child. Dev. 1993;64:1143–1157. doi: 10.2307/1131331.
    1. Tecchio F, Salustri C, Thaut MH, Pasqualetti P, Rossini P. Conscious and preconscious adaptation to rhythmic auditory stimuli: a magnetoencephalographic study of human brain responses. Exp. Brain. Res. 2000;135:222–230. doi: 10.1007/s002210000507.
    1. Peper CLE, Oorthuizen JK, Roerdink M. Attentional demands of cued walking in healthy young and elderly adults. Gait. Posture. 2012;36:378–382. doi: 10.1016/j.gaitpost.2012.03.032.
    1. Roerdink M, Bank PJ, Peper CLE, Beek PJ. Walking to the beat of different drums: Practical implications for the use of acoustic rhythms in gait rehabilitation. Gait. Posture. 2011;33:690–694. doi: 10.1016/j.gaitpost.2011.03.001.
    1. Morris ME, Martin CL, Schenkman ML. Striding Out With Parkinson Disease: Evidence-Based Physical Therapy for Gait Disorders. Phys. Ther. 2010;90:280–288. doi: 10.2522/ptj.20090091.
    1. Sheridan M, Flowers K. Movement variability and bradykinesia in Parkinson’s disease. Brain: J. Neurol. 1990;113:1149–1161. doi: 10.1093/brain/113.4.1149.
    1. Williams AJ, Peterson DS, Earhart GM. Gait Coordination in Parkinson Disease: Effects of Step Length and Cadence Manipulations. Gait. Posture. 2013;38:340–344. doi: 10.1016/j.gaitpost.2012.12.009.
    1. Friedman JH. Fatigue in Parkinson’s disease patients. Curr. Treat. Options. Neurol. 2009;11:186–190. doi: 10.1007/s11940-009-0022-8.
    1. Nascimento LR, de Oliveira CQ, Ada L, Michaelsen SM, Teixeira-Salmela LF. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: a systematic review. J. Physiother. 2015;61:10–15. doi: 10.1016/j.jphys.2014.11.015.
    1. Pate RR, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273:402–407. doi: 10.1001/jama.1995.03520290054029.
    1. Poushter, J. Smartphone ownership and internet usage continues to climb in emerging economies. Pew Research Center22 (2016).
    1. Post B, van der Eijk M, Munneke M, Bloem BR. Multidisciplinary care for Parkinson’s disease: not if, but how! Pract. Neurol. 2011;11:58–61. doi: 10.1136/jnnp.2011.241604.
    1. Bello O, et al. The effects of treadmill or overground walking training program on gait in Parkinson’s disease. Gait. Posture. 2013;38:590–595. doi: 10.1016/j.gaitpost.2013.02.005.
    1. Fang R, Ye S, Huangfu J, Calimag DP. Music therapy is a potential intervention for cognition of Alzheimer’s Disease: a minireview. Transl. Neurodegener. 2017;6:2. doi: 10.1186/s40035-017-0073-9.
    1. Hanna-Pladdy B, MacKay A. The Relation Between Instrumental Musical Activity and Cognitive Aging. Neuropsychology. 2011;25:378–386. doi: 10.1037/a0021895.
    1. Sturman MT, et al. Physical activity, cognitive activity, and cognitive decline in a biracial community population. Arch. Neurol. 2005;62:1750–1754. doi: 10.1001/archneur.62.11.1750.
    1. Mammarella N, Fairfield B, Cornoldi C. Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging. Clin. Exp. Res. 2007;19:394–399. doi: 10.1007/BF03324720.
    1. Stork MJ, Kwan MY, Gibala MJ, Martin Ginis KA. Music enhances performance and perceived enjoyment of sprint interval exercise. Med. Sci. Sports. Exerc. 2015;47:1052–1060. doi: 10.1249/MSS.0000000000000494.
    1. Cha Y, Kim Y, Hwang S, Chung Y. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: A pilot randomized controlled study. NeuroRehabilitation. 2014;35:681–688.
    1. Menon V, Levitin DJ. The rewards of music listening: response and physiological connectivity of the mesolimbic system. Neuroimage. 2005;28:175–184. doi: 10.1016/j.neuroimage.2005.05.053.
    1. Eliakim M, Meckel Y, Nemet D, Eliakim A. The effect of music during warm-up on consecutive anaerobic performance in elite adolescent volleyball players. Int. J. Sports. Med. 2007;28:321–325. doi: 10.1055/s-2006-924360.
    1. Crust L. Carry-over effects of music in an isometric muscular endurance task. Percept. Mot. Skills. 2004;98:985–991. doi: 10.2466/pms.98.3.985-991.
    1. Millington PJ, Myklebust BM, Shambes GM. Biomechanical analysis of the sit-to-stand motion in elderly persons. Arch. Phys. Med. Rehabil. 1992;73:609–617.
    1. Peng Y-C, et al. Immediate effects of therapeutic music on loaded sit-to-stand movement in children with spastic diplegia. Gait. Posture. 2011;33:274–278. doi: 10.1016/j.gaitpost.2010.11.020.
    1. Gaver WW. How do we hear in the world? Explorations in ecological acoustics. Ecol. Psychol. 1993;5:285–313. doi: 10.1207/s15326969eco0504_2.
    1. Young W, Rodger M, Craig CM. Perceiving and reenacting spatiotemporal characteristics of walking sounds. J. Exp. Psychol. Hum. Percept. Perform. 2013;39:464. doi: 10.1037/a0029402.
    1. Effenberg, A. O. In Encyclopedia of Sport and Exercise Psychology Vol. 2 (eds Eklund, R. C. & Tenenbaum, G.) 663–667 (SAGE Publications, 2014).
    1. Ghai, S., Ghai, I., & Effenberg, A. O. “Low road” to rehabilitation. Neuropsychiatr. Dis. Treat. (2017): Accepted, In press.
    1. Rodger MW, Young WR, Craig CM. Synthesis of walking sounds for alleviating gait disturbances in Parkinson’s disease. IEEE. Trans. Neural. Syst. Rehabil. Eng. 2014;22:543–548. doi: 10.1109/TNSRE.2013.2285410.
    1. Schmitz, Gerd, Daniela Kroeger & Alfred, O. Effenberg. A mobile sonification system for stroke rehabilitation. Geo. Ins. Tech. (2014).
    1. Scholz, D. S. et al. Sonification as a possible stroke rehabilitation strategy. Front. Neurosci. 8 (2014).
    1. Schmitz, G. & Effenberg, A. O. Schlagmann 2.0–Bewegungsakustische Dimensionen interpersonaler Koordination im Mannschaftssport. Ger. J. Exerc. Sport. Res. 1–14 (2017).
    1. Demos AP, Chaffin R, Begosh KT, Daniels JR, Marsh KL. Rocking to the beat: Effects of music and partner’s movements on spontaneous interpersonal coordination. ‎J. Exp. Psychol. Gen. 2012;141:49. doi: 10.1037/a0023843.
    1. Tagliabue, M. & McIntyre, J. A modular theory of multisensory integration for motor control. Front. Computat. Neurosci. 8 (2014).
    1. Hameed S, Ferris T, Jayaraman S, Sarter N. Using informative peripheral visual and tactile cues to support task and interruption management. Hum. Factors. 2009;51:126–135. doi: 10.1177/0018720809336434.
    1. Hiyamizu M, Morioka S, Shomoto K, Shimada T. Effects of dual task balance training on dual task performance in elderly people: a randomized controlled trial. Clin. Rehabil. 2012;26:58–67. doi: 10.1177/0269215510394222.
    1. Schenkman M, Morey M, Kuchibhatla M. Spinal flexibility and balance control among community-dwelling adults with and without Parkinson’s disease. J. Gerontol. A. Biol. Sci. Med. Sci. 2000;55:M441–M445. doi: 10.1093/gerona/55.8.M441.
    1. Sterling NW, et al. Dopaminergic modulation of arm swing during gait among Parkinson’s disease patients. J. Parkinsons. Dis. 2015;5:141–150.
    1. Vaugoyeau M, et al. Axial rotation in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 2006;77:815–821. doi: 10.1136/jnnp.2004.050666.
    1. Son H, Kim E. Kinematic analysis of arm and trunk movements in the gait of Parkinson’s disease patients based on external signals. J. Phys. Ther. Sci. 2015;27:3783–3786. doi: 10.1589/jpts.27.3783.

Source: PubMed

3
S'abonner