Feasibility of Dose Escalation in Patients With Intracranial Pediatric Ependymoma

Fatima Tensaouti, Anne Ducassou, Léonor Chaltiel, Stéphanie Bolle, Jean Louis Habrand, Claire Alapetite, Bernard Coche-Dequeant, Valérie Bernier, Line Claude, Christian Carrie, Laetitia Padovani, Xavier Muracciole, Stéphane Supiot, Aymeri Huchet, Julie Leseur, Christine Kerr, Grégorie Hangard, Albert Lisbona, Farid Goudjil, Régis Ferrand, Anne Laprie, Fatima Tensaouti, Anne Ducassou, Léonor Chaltiel, Stéphanie Bolle, Jean Louis Habrand, Claire Alapetite, Bernard Coche-Dequeant, Valérie Bernier, Line Claude, Christian Carrie, Laetitia Padovani, Xavier Muracciole, Stéphane Supiot, Aymeri Huchet, Julie Leseur, Christine Kerr, Grégorie Hangard, Albert Lisbona, Farid Goudjil, Régis Ferrand, Anne Laprie

Abstract

Background and purpose: Pediatric ependymoma carries a dismal prognosis, mainly owing to local relapse within RT fields. The current prospective European approach is to increase the radiation dose with a sequential hypofractionated stereotactic boost. In this study, we assessed the possibility of using a simultaneous integrated boost (SIB), comparing VMAT vs. IMPT dose delivery. Material and methods: The cohort included 101 patients. The dose to planning target volume (PTV59.4) was 59.4/1.8 Gy, and the dose to SIB volume (PTV67.6) was 67.6/2.05 Gy. Gross tumor volume (GTV) was defined as the tumor bed plus residual tumor, clinical target volume (CTV59.4) was GTV + 5 mm, and PTV59.4 was CTV59.4 + 3 mm. PTV67.6 was GTV+ 3 mm. After treatment plan optimization, quality indices and doses to target volume and organs at risk (OARs) were extracted and compared with the standard radiation doses that were actually delivered (median = 59.4 Gy [50.4 59.4]). Results: In most cases, the proton treatment resulted in higher quality indices (p < 0.001). Compared with the doses that were initially delivered, mean, and maximum doses to some OARs were no higher with SIB VMAT, and significantly lower with protons (p < 0.001). In the case of posterior fossa tumor, there was a lower dose to the brainstem with protons, in terms of V59 Gy, mean, and near-maximum (D2%) doses. Conclusion: Dose escalation with intensity-modulated proton or photon SIB is feasible in some patients. This approach could be considered for children with unresectable residue or post-operative FLAIR abnormalities, particularly if they have supratentorial tumors. It should not be considered for infratentorial tumors encasing the brainstem or extending to the medulla.

Keywords: boost; ependymoma; intracranial; photon therapy; proton therapy; treatment planning.

Figures

Figure 1
Figure 1
Doses to OARs and near-maximum D2% (top) and mean doses (bottom) as a % of the prescribed target dose. Infratentorial tumor (left panel) and supratentorial tumor (right panel).
Figure 2
Figure 2
Median of mean and near-maximum doses (cGy) to OARs received at treatment (tt) with SIB-VMAT or SIB-PBS in the case of infratentorial tumor. IER, right inner ear; IEL, left inner ear; BS MD, brainstem mean dose; BS NMD, brainstem near-maximum dose; PG, pituitary gland; HR, right hippocampus; HL, left hippocampus; ST, standard treatment.
Figure 3
Figure 3
Median of mean and near-maximum doses (cGy) to OARs received at treatment (tt) with SIB-VMAT or SIB-PBS in the case of supratentorial tumor. BS MD, brainstem mean dose; BS NMD, brainstem near-maximum dose; PG, pituitary gland; HR, right hippocampus; HL, left hippocampus; ST, standard treatment.

References

    1. Rousseau P, Habrand JL, Sarrazin D, Kalifa C, Terrier-Lacombe MJ, Rekacewicz C, et al. . Treatment of intracranial ependymomas of children: review of a 15-year experience. Int J Radiat Oncol Biol Phys. (1994) 28:381–6. 10.1016/0360-3016(94)90061-2
    1. Perilongo G, Massimino M, Sotti G, Belfontali T, Masiero L, Rigobello L, et al. . Analyses of prognostic factors in a retrospective review of 92 children with ependymoma: Italian pediatric neuro-oncology group. Med Pediatr Onco. (1997) 29:79–85.
    1. Mørk SJ, Løken AC. Ependymoma. A follow-up study of 101 cases. Cancer. (1977) 40:907–15.
    1. Brodin NP, Munck Af Rosenschöld P, Aznar MC, Kiil-Berthelsen A, Vogelius IR, Nilsson P, et al. . Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol. (2011) 50:806–16. 10.3109/0284186X.2011.582514
    1. Miralbell R, Lomax A, Cella L, Schneider U. Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int J Radiat Oncol Biol Phys. (2002) 54:824–9. 10.1016/S0360-3016(02)02982-6
    1. Athar BS, Paganetti H. Comparison of second cancer risk due to out-of-field doses from 6-MV IMRT and proton therapy based on 6 pediatric patient treatment plans. Radiother Oncol. (2011) 98:87–92. 10.1016/j.radonc.2010.11.003
    1. Kristensen I, Nilsson K, Nilsson P. Comparative proton and photon treatment planning in pediatric patients with various diagnoses. Int J Part Ther. (2015) 2:367–75. 10.14338/IJPT-14-00026.1
    1. Armoogum KS, Thorp N. Dosimetric Comparison and potential for improved clinical outcomes of paediatric CNS patients treated with protons or IMRT. Cancers (Basel). (2015) 7:706–22. 10.3390/cancers7020706
    1. Takizawa D, Mizumoto M, Yamamoto T, Oshiro Y, Fukushima H, Fukushima T, et al. . A comparative study of dose distribution of PBT, 3D-CRT and IMRT for pediatric brain tumors. Radiat Oncol. (2017) 12:40. 10.1186/s13014-017-0775-2
    1. Sato M, Gunther JR, Mahajan A, Jo E, Paulino AC, Adesina AM, et al. Progression-free survival of children with localized ependymoma treated with intensity-modulated radiation therapy or proton-beam radiation therapy. Cancer. (2017) 123:2570–8. 10.1002/cncr.30623
    1. MacDonald SM, Safai S, Trofimov A, Wolfgang J, Fullerton B, Yeap BY, et al. . Proton radiotherapy for childhood ependymoma: initial clinical outcomes and dose comparisons. Int J Radiat Oncol Biol Phys. (2008) 71:979–86. 10.1016/j.ijrobp.2007.11.065
    1. Mac Donald SM, Sethi R, Lavally B, Yeap BY, Marcus KJ, Caruso P, et al. Proton radiotherapy for pediatric central nervous system ependymoma: Clinical outcomes for 70 patients. Neuro Oncol. (2013) 15:1552–9. 10.1093/neuonc/not121
    1. Pulsifer MB, Sethi R V, Kuhlthau KA, MacDonald SM, Tarbell NJ, Yock TI. Early cognitive outcomes following proton radiation in pediatric patients with brain and central nervous system tumors. Int J Radiat Oncol Biol Phys. (2015) 93:400–7. 10.1016/j.ijrobp.2015.06.012
    1. Ducassou A, Padovani L, Chaltiel L, Bolle S, Habrand J-L, Claude L, et al. Pediatric localized intra cranial ependymomas: a multicenter analysis of the children's cancer french society (SFCE). Int J Radiat Oncol. (2018) 102:166–73. 10.1016/j.ijrobp.2018.05.036
    1. Merchant TE. Current clinical challenges in childhood ependymoma: a focused review. J Clin Oncol. (2017) 35:2364–9. 10.1200/JCO.2017.73.1265
    1. Tensaouti F, Ducassou A, Chaltiel L, Bolle S, Muracciole X, Coche-Dequeant B, et al. . Patterns of failure after radiotherapy for pediatric patients with intracranial ependymoma. Radiother Oncol. (2017) 122:362–7. 10.1016/j.radonc.2016.12.025
    1. Tensaouti F, Ducassou A, Chaltiel L, Sevely A, Bolle S, Padovani L, et al. . Imaging biomarkers of outcome after radiotherapy for pediatric ependymoma. Radiother Oncol. (2018) 127:103–7. 10.1016/j.radonc.2018.02.008
    1. Massimino M, Miceli R, Giangaspero F, Boschetti L, Modena P, Antonelli M, et al. . Final results of the second prospective AIEOP protocol for pediatric intracranial ependymoma. Neuro Oncol. (2016) 18:1451–60. 10.1093/neuonc/now108
    1. Prescribing recording and reporting photon-beam intensity-modulated radiation therapy (IMRT): contents. J ICRU. (2010) 10 10.1093/jicru/ndq002
    1. van Veelen-Vincent M-LC, Pierre-Kahn A, Kalifa C, Sainte-Rose C, Zerah M, Thorne J, et al. Ependymoma in childhood: prognostic factors, extent of surgery, and adjuvant therapy. J Neurosurg. (2002) 97:827–35. 10.3171/jns.2002.97.4.0827
    1. Figarella-Branger D, Civatte M, Bouvier-Labit C, Gouvernet J, Gambarelli D, Gentet J-C, et al. . Prognostic factors in intracranial ependymomas in children. J Neurosurg. (2000) 93:605–13. 10.3171/jns.2000.93.4.0605
    1. Witt H, Mack SC, Ryzhova M, Bender S, Sill M, Isserlin R, et al. . Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell. NIH; (2011) 20:143–57. 10.1016/j.ccr.2011.07.007
    1. Sabin ND, Merchant TE, Li X, Li Y, Klimo P, Boop FA, et al. . Quantitative imaging analysis of posterior fossa ependymoma location in children. Childs Nerv Syst. (2016) 32:1441–7. 10.1007/s00381-016-3092-4
    1. Rombi B, Vennarini S, Vinante L, Ravanelli D, Amichetti M. Proton radiotherapy for pediatric tumors: review of first clinical results. Ital J Pediatr. (2014) 40:74. 10.1186/s13052-014-0074-6
    1. Ken S, Vieillevigne L, Franceries X, Simon L, Supper C, Lotterie J-A, et al. . Integration method of 3D MR spectroscopy into treatment planning system for glioblastoma IMRT dose painting with integrated simultaneous boost. Radiat Oncol. (2013) 8:1. 10.1186/1748-717X-8-1
    1. Rao AD, Rashid AS, Chen Q, Villar RC, Kobyzeva D, Nilsson K, et al. . Reirradiation for recurrent pediatric central nervous system malignancies: a multi-institutional review. Int J Radiat Oncol. (2017) 99:634–41. 10.1016/j.ijrobp.2017.07.026
    1. Eaton BR, Chowdhry V, Weaver K, Liu L, Ebb D, MacDonald SM, et al. . Use of proton therapy for re-irradiation in pediatric intracranial ependymoma. Radiother Oncol. (2015) 116:301–8. 10.1016/j.radonc.2015.07.023
    1. Tsang DS, Burghen E, Klimo P, Boop FA, Ellison DW, Merchant TE. Outcomes after reirradiation for recurrent pediatric intracranial ependymoma. Int J Radiat Oncol. (2018) 100:507–15. 10.1016/j.ijrobp.2017.10.002
    1. Régnier E, Laprie A, Ducassou A, Bolle S, Supiot S, Muracciole X, et al. . Re-irradiation of locally recurrent pediatric intracranial ependymoma: Experience of the French society of children's cancer. Radiother Oncol. (2019) 132:1–7. 10.1016/j.radonc.2018.11.009
    1. Rombi B, Ares C, Hug EB, Schneider R, Goitein G, Staab A, et al. . Spot-scanning proton radiation therapy for pediatric chordoma and chondrosarcoma: Clinical outcome of 26 patients treated at paul scherrer institute. Int J Radiat Oncol Biol Phys. (2013) 86:578–84. 10.1016/j.ijrobp.2013.02.026
    1. Fung V, Calugaru V, Bolle S, Mammar H, Alapetite C, Maingon P, et al. . Proton beam therapy for skull base chordomas in 106 patients: a dose adaptive radiation protocol. Radiother Oncol. (2018) 128:198–202. 10.1016/j.radonc.2017.12.017
    1. Verma V, Rwigema J-CM, Malyapa RS, Regine WF, Simone CB. Systematic assessment of clinical outcomes and toxicities of proton radiotherapy for reirradiation. Radiother Oncol. (2017) 125:21–30. 10.1016/j.radonc.2017.08.005
    1. Merchant TE, Chitti RM, Li C, Xiong X, Sanford RA, Khan RB. Factors associated with neurological recovery of brainstem function following post-operative conformal radiation therapy for infratentorial ependymoma. Int J Radiat Oncol Biol Phys. (2010) 76:496–503. 10.1016/j.ijrobp.2009.01.079
    1. Indelicato DJ, Flampouri S, Rotondo RL, Bradley JA, Morris CG, Aldana PR, et al. . Incidence and dosimetric parameters of pediatric brainstem toxicity following proton therapy. Acta Oncol (Madr). (2014) 53:1298–304. 10.3109/0284186X.2014.957414
    1. Haas-Kogan D, Indelicato D, Paganetti H, Esiashvili N, Mahajan A, Yock T, et al. . National cancer institute workshop on proton therapy for children: considerations regarding brainstem injury. Int J Radiat Oncol. (2018) 101:152–68. 10.1016/j.ijrobp.2018.01.013
    1. MacDonald SM, Laack NN, Terezakis S. Humbling advances in technology: protons, brainstem necrosis, and the self-driving car. Int J Radiat Oncol Biol Phys. (2017) 97:216–9. 10.1016/j.ijrobp.2016.08.001
    1. Tensaouti F, Ducassou A, Chaltiel L, Sevely A, Bolle S, Muracciole X, et al. . Prognostic and predictive values of diffusion and perfusion MRI in paediatric intracranial ependymomas in a large national study. Br J Radiol. (2016) 89:20160537. 10.1259/bjr.20160537
    1. Pajtler KW, Witt H, Sill M, Jones DTW, Hovestadt V, Kratochwil F, et al. . Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. (2015) 27:728–43. 10.1016/j.ccell.2015.04.002
    1. Mohan R, Das IJ, Ling CC. Empowering intensity modulated proton therapy through physics and technology: an overview. Int J Radiat Oncol. (2017) 99:304–16. 10.1016/j.ijrobp.2017.05.005
    1. Ladra MM, MacDonald SM, Terezakis SA. Proton therapy for central nervous system tumors in children. Pediatr Blood Cancer. (2018) 65:e27046. 10.1002/pbc.27046
    1. Peeler CR, Mirkovic D, Titt U, Blanchard P, Gunther JR, Mahajan A, et al. . Clinical evidence of variable proton biological effectiveness in pediatric patients treated for ependymoma. Radiother Oncol. (2016) 121:395–401. 10.1016/j.radonc.2016.11.001
    1. Carabe A, España S, Grassberger C, Paganetti H. Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver. Phys Med Biol. (2013) 58:2103–17. 10.1088/0031-9155/58/7/2103
    1. Frese MC, Wilkens JJ, Huber PE, Jensen AD, Oelfke U, Taheri-Kadkhoda Z. Application of constant vs. variable relative biological effectiveness in treatment planning of intensity-modulated proton therapy. Int J Radiat Oncol Biol Phys. (2011) 79:80–8. 10.1016/j.ijrobp.2009.10.022
    1. Giovannini G, Böhlen T, Cabal G, Bauer J, Tessonnier T, Frey K, et al. . Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol. (2016) 11:68. 10.1186/s13014-016-0642-6
    1. Tilly N, Johansson J, Isacsson U, Medin J, Blomquist E, Grusell E, et al. . The influence of RBE variations in a clinical proton treatment plan for a hypopharynx cancer. Phys Med Biol. (2005) 50:2765–77. 10.1088/0031-9155/50/12/003
    1. Underwood T, Giantsoudi D, Moteabbed M, Zietman A, Efstathiou J, Paganetti H, et al. . Can we advance proton therapy for prostate? considering alternative beam angles and relative biological effectiveness variations when comparing against intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. (2016) 95:454–64. 10.1016/j.ijrobp.2016.01.018
    1. Giantsoudi D, Grassberger C, Craft D, Niemierko A, Trofimov A, Paganetti H. Linear energy transfer-guided optimization in intensity modulated proton therapy: feasibility study and clinical potential. Int J Radiat Oncol Biol Phys. (2013) 87:216–22. 10.1016/j.ijrobp.2013.05.013
    1. Cheng Q, Roelofs E, Ramaekers BLT, Eekers D, Van Soest J, Lustberg T, et al. . Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer–Comparison of dose, toxicity, and cost-effectiveness. Radiother Oncol. (2016) 118:281–5. 10.1016/j.radonc.2015.12.029
    1. Langendijk JA, Lambin P, De Ruysscher D, Widder J, Bos M, Verheij M. Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol. (2013) 107:267–73. 10.1016/j.radonc.2013.05.007
    1. Hoogeman M, Arts T, van de Water S, der Voort S, Perkó Z, Lathouwers D, et al. SP-0010: Selection of patients for proton therapy: a physicists view. Radiother Oncol. (2016) 119:S4 10.1016/S0167-8140(16)31259-2
    1. Venema E, Timmermans C, Penninkhof J, Petit S, Heijmen B. SP-0666: Automated treatment planning–from theory to practice. Radiother Oncol. (2018) 127:S352 10.1016/S0167-8140(18)30976-9

Source: PubMed

3
S'abonner