Circulating Ionized Magnesium as a Measure of Supplement Bioavailability: Results from a Pilot Study for Randomized Clinical Trial

Jiada Zhan, Taylor C Wallace, Sarah J Butts, Sisi Cao, Velarie Ansu, Lisa A Spence, Connie M Weaver, Nana Gletsu-Miller, Jiada Zhan, Taylor C Wallace, Sarah J Butts, Sisi Cao, Velarie Ansu, Lisa A Spence, Connie M Weaver, Nana Gletsu-Miller

Abstract

Oral supplementation may improve the dietary intake of magnesium, which has been identified as a shortfall nutrient. We conducted a pilot study to evaluate appropriate methods for assessing responses to the ingestion of oral magnesium supplements, including ionized magnesium in whole blood (iMg2+) concentration, serum total magnesium concentration, and total urinary magnesium content. In a single-blinded crossover study, 17 healthy adults were randomly assigned to consume 300 mg of magnesium from MgCl2 (ReMag®, a picosized magnesium formulation) or placebo, while having a low-magnesium breakfast. Blood and urine samples were obtained for the measurement of iMg2+, serum total magnesium, and total urine magnesium, during 24 h following the magnesium supplement or placebo dosing. Bioavailability was assessed using area-under-the-curve (AUC) as well as maximum (Cmax) and time-to-maximum (Tmax) concentration. Depending on normality, data were expressed as the mean ± standard deviation or median (range), and differences between responses to MgCl2 or placebo were measured using the paired t-test or Wilcoxon signed-rank test. Following MgCl2 administration versus placebo administration, we observed significantly greater increases in iMg2+ concentrations (AUC = 1.51 ± 0.96 vs. 0.84 ± 0.82 mg/dL·24h; Cmax = 1.38 ± 0.13 vs. 1.32 ± 0.07 mg/dL, respectively; both p < 0.05) but not in serum total magnesium (AUC = 27.00 [0, 172.93] vs. 14.55 [0, 91.18] mg/dL·24h; Cmax = 2.38 [1.97, 4.01] vs. 2.24 [1.98, 4.31] mg/dL) or in urinary magnesium (AUC = 201.74 ± 161.63 vs. 139.30 ± 92.84 mg·24h; Cmax = 26.12 [12.91, 88.63] vs. 24.38 [13.51, 81.51] mg/dL; p > 0.05). Whole blood iMg2+ may be a more sensitive measure of acute oral intake of magnesium compared to serum and urinary magnesium and may be preferred for assessing supplement bioavailability.

Keywords: biomarkers; diet; iMg; magnesium; nutritional status.

Conflict of interest statement

TCW serves on the Scientific Advisory Board for The Vitamin Shoppe and has received research grants from Pfizer Consumer Healthcare. All his conflicts are listed at www.drtaylorwallace.com. CMW is on the scientific advisory boards of the Yogurt in Nutrition Initiative (YINI) and the U.S. Food and Drug Administration and serves on the Board of Trustees of the International Life Sciences Institute (ILSI). JZ, SJB, SC, VA, LAS, and NG-M have no conflicts of interest to disclose.

Figures

Figure 1
Figure 1
Average whole blood concentration of ionized magnesium (iMg2+) and serum total magnesium concentrations, as well as urinary magnesium content (top); total area under the curve (AUC) in mg/dL•24h for iMg2+ and serum total Mg or mg•24h for urine Mg (bottom) over 24 h post-treatment for MgCl2 treatment vs. placebo. * Differences between MgCl2 versus placebo, p < 0.05. To convert between mg/dL and mmol/L, divide by 2.43.

References

    1. Newhouse I.J., Finstad E.W. The effects of magnesium supplementation on exercise performance. Clin. J. Sport Med. 2000;10:195–200. doi: 10.1097/00042752-200007000-00008.
    1. Fawcett W.J., Haxby E.J., Male D.A. Magnesium: Physiology and pharmacology. Br. J. Anaesth. 1999;83:302–320. doi: 10.1093/bja/83.2.302.
    1. Ahmed F., Mohammed A. Magnesium: The forgotten electrolyte—A review on hypomagnesemia. Med. Sci. 2019;7:E56. doi: 10.3390/medsci7040056.
    1. De Baaij J.H., Hoenderop J.G., Bindels R.J. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015;95:1–46. doi: 10.1152/physrev.00012.2014.
    1. Bairoch A. The ENZYME database in 2000. Nucleic Acids Res. 2000;28:304–305. doi: 10.1093/nar/28.1.304.
    1. Caspi R., Altman T., Dreher K., Fulcher C.A., Subhraveti P., Keseler I.M., Kothari A., Krummenacker M., Latendresse M., Mueller L.A., et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012;40:D742–D753. doi: 10.1093/nar/gkr1014.
    1. Bara M., Guiet-Bara A., Durlach J. Regulation of sodium and potassium pathways by magnesium in cell membranes. Magnes. Res. 1993;6:167–177.
    1. Laban E., Charbon G.A. Magnesium and cardiac arrhythmias: Nutrient or drug? J. Am. Coll. Nutr. 1986;5:521–532. doi: 10.1080/07315724.1986.10720154.
    1. Zwillinger L. Uber die magnesiumwirking auf das. Herz Klin Wochenschr. 1935;14:1429–1433. doi: 10.1007/BF01778848.
    1. Ford E.S., Mokdad A.H. Dietary magnesium intake in a national sample of US adults. J. Nutr. 2003;133:2879–2882. doi: 10.1093/jn/133.9.2879.
    1. Fulgoni V.L., III, Keast D.R., Bailey R.L., Dwyer J. Foods, fortificants, and supplements: Where do Americans get their nutrients? J. Nutr. 2011;141:1847–1854. doi: 10.3945/jn.111.142257.
    1. Moshfegh A.J., Rhodes D.G., Baer D.J., Murayi T., Clemens J.C., Rumpler W.V., Paul D.R., Sebastian R.S., Kuczynski K.J., Ingwersen L.A., et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008;88:324–332. doi: 10.1093/ajcn/88.2.324.
    1. Papanikolaou Y., Fulgoni V.L. Grains contribute shortfall nutrients and nutrient density to older US adults: Data from the National Health and Nutrition Examination Survey, 2011–2014. Nutrients. 2018;10:E534. doi: 10.3390/nu10050534.
    1. McNair P., Christensen M.S., Christiansen C., Madsbad S., Transbol I. Renal hypomagnesaemia in human diabetes mellitus: Its relation to glucose homeostasis. Eur. J. Clin. Invest. 1982;12:81–85. doi: 10.1111/j.1365-2362.1982.tb00942.x.
    1. Pham P.C., Pham P.M., Pham P.A., Pham S.V., Pham H.V., Miller J.M., Yanagawa N., Pham P.T. Lower serum magnesium levels are associated with more rapid decline of renal function in patients with diabetes mellitus type 2. Clin. Nephrol. 2005;63:429–436. doi: 10.5414/CNP63429.
    1. Gommers L.M., Hoenderop J.G., Bindels R.J., de Baaij J.H. Hypomagnesemia in type 2 diabetes: A vicious circle? Diabetes. 2016;65:3–13. doi: 10.2337/db15-1028.
    1. Goldman L., Schafer A.I. Goldman-Cecil Medicine. 26th ed. Elsevier Health Sciences; Philadelphia, PA, USA: 2015.
    1. Dasgupta A., Sarma D., Saikia U.K. Hypomagnesemia in type 2 diabetes mellitus. Indian J. Endocrinol. Metab. 2012;16:1000–1003. doi: 10.4103/2230-8210.103020.
    1. Cheungpasitporn W., Thongprayoon C., Qian Q. Dysmagnesemia in hospitalized patients: Prevalence and prognostic importance. Mayo Clin. Proc. 2015;90:1001–1010. doi: 10.1016/j.mayocp.2015.04.023.
    1. Hayes J.P., Ryan M.F., Brazil N., Riordan T.O., Walsh J.B., Coakley D. Serum hypomagnesaemia in an elderly day-hospital population. Ir. Med. J. 1989;82:117–119.
    1. Wong E.T., Rude R.K., Singer F.R., Shaw S.T., Jr. A high prevalence of hypomagnesemia and hypermagnesemia in hospitalized patients. Am. J. Clin. Pathol. 1983;79:348–352. doi: 10.1093/ajcp/79.3.348.
    1. Whang R., Oei T.O., Aikawa J.K., Watanabe A., Vannatta J., Fryer A., Markanich M. Predictors of clinical hypomagnesemia. Hypokalemia, hypophosphatemia, hyponatremia, and hypocalcemia. Arch. Intern. Med. 1984;144:1794–1796. doi: 10.1001/archinte.1984.00350210112019.
    1. Reinhart R.A., Desbiens N.A. Hypomagnesemia in patients entering the ICU. Crit. Care Med. 1985;13:506–507. doi: 10.1097/00003246-198506000-00015.
    1. Ryzen E., Wagers P.W., Singer F.R., Rude R.K. Magnesium deficiency in a medical ICU population. Crit. Care Med. 1985;13:19–21. doi: 10.1097/00003246-198501000-00006.
    1. Altura B.M., Altura B.T. Role of magnesium in patho-physiological processes and the clinical utility of magnesium ion selective electrodes. Scand. J. Clin. Lab. Invest. 1996;224:211–234. doi: 10.3109/00365519609088642.
    1. Thode J., Juul-Jorgensen B., Seibaek M., Elming H., Borresen E., Jordal R. Evaluation of an ionized magnesium-pH analyzer—NOVA 8. Scand. J. Clin. Lab. Invest. 1998;58:127–133. doi: 10.1080/00365519850186706.
    1. Yeh D.D., Chokengarmwong N., Chang Y., Yu L., Arsenault C., Rudolf J., Lee-Lewandrowski E., Lewandrowski K. Total and ionized magnesium testing in the surgical intensive care unit-Opportunities for improved laboratory and pharmacy utilization. J. Crit. Care. 2017;42:147–151. doi: 10.1016/j.jcrc.2017.07.026.
    1. Altura B.T., Wilimzig C., Trnovec T., Nyulassy S., Altura B.M. Comparative effects of a Mg-enriched diet and different orally administered magnesium oxide preparations on ionized Mg, Mg metabolism and electrolytes in serum of human volunteers. J. Am. Coll. Nutr. 1994;13:447–454. doi: 10.1080/07315724.1994.10718433.
    1. Rooney M.R., Rudser K.D., Alonso A., Harnack L., Saenger A.K., Lutsey P.L. Circulating ionized magnesium: Comparisons with circulating total magnesium and the response to magnesium supplementation in a randomized controlled trial. Nutrients. 2020;12:E263. doi: 10.3390/nu12010263.
    1. Blancquaert L., Vervaet C., Derave W. Predicting and Testing Bioavailability of Magnesium Supplements. Nutrients. 2019;11:1663. doi: 10.3390/nu11071663.
    1. Wilimzig C., Latz R., Vierling W., Mutschler E., Trnovec T., Nyulassy S. Increase in magnesium plasma level after orally administered trimagnesium dicitrate. European J. Clin. Pharmacol. 1996;49:317–323. doi: 10.1007/BF00226334.
    1. Malon A., Brockmann C., Fijalkowska-Morawska J., Rob P., Maj-Zurawska M. Ionized magnesium in erythrocytes--the best magnesium parameter to observe hypo- or hypermagnesemia. Clin. Chim. Acta. 2004;349:67–73. doi: 10.1016/j.cccn.2004.06.006.
    1. Greenway D.C., Hindmarsh J.T., Wang J., Khodadeen J.A., Hebert P.C. Reference interval for whole blood ionized magnesium in a healthy population and the stability of ionized magnesium under varied laboratory conditions. Clin. Biochem. 1996;29:515–520. doi: 10.1016/S0009-9120(96)00091-4.
    1. Palacios C., Wigertz K., Braun M., Martin B.R., McCabe G.P., McCabe L., Pratt J.H., Peacock M., Weaver C.M. Magnesium retention from metabolic-balance studies in female adolescents: Impact of race, dietary salt, and calcium. Am. J. Clin. Nutr. 2013;97:1014–1019. doi: 10.3945/ajcn.112.039867.
    1. Lowenstein F.W., Stanton M.F. Serum magnesium levels in the United States, 1971–1974. J. Am. Coll. Nutr. 1986;5:399–414. doi: 10.1080/07315724.1986.10720143.
    1. Norbert Wolfgang Tietz . Clinical Guide to Laboratory Tests. W.B. Saunders Company; Philadelphia, PA, USA: 1990.
    1. Firoz M., Graber M. Bioavailability of US commercial magnesium preparations. Magnes. Res. 2001;14:257–262.
    1. Von Ehrlich B., Barbagallo M., Classen H.G., Guerrero-Romero F., Mooren F.C., Rodriguez-Moran M., Vierling W., Vormann J., Kisters K. Significance of magnesium in insulin resistance, metabolic syndrome, and diabetes–recommendations of the Association of Magnesium Research e.V. Trace Elem. Electrolytes. 2017;34:124. doi: 10.5414/TEX01473.
    1. Costello R.B., Elin R.J., Rosanoff A., Wallace T.C., Guerrero-Romero F., Hruby A., Lutsey P.L., Nielsen F.H., Rodriguez-Moran M., Song Y., et al. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come. Adv. Nutr. 2016;7:977–993. doi: 10.3945/an.116.012765.
    1. Chan K.H., Chacko S.A., Song Y., Cho M., Eaton C.B., Wu W.C., Liu S. Genetic variations in magnesium-related ion channels may affect diabetes risk among African American and Hispanic American women. J. Nutr. 2015;145:418–424. doi: 10.3945/jn.114.203489.
    1. McHale J. Thiocyanate interference with Nova’s ionized magnesium electrode. Clin. Chem. 1997;43:1672. doi: 10.1093/clinchem/43.9.1671.
    1. Wong S.L., Epperson A.E., Rogers J., Castro R.J., Jackler R.K., Prochaska J.J. A multimodal assessment of tobacco use on a university campus and support for adopting a comprehensive tobacco-free policy. Prev. Med. 2020;133:106008. doi: 10.1016/j.ypmed.2020.106008.
    1. Rowe S., Alexander N., Clydesdale F.M., Applebaum R.S., Atkinson S., Black R.M., Dwyer J.T., Hentges E., Higley N.A., Lefevre M., et al. Funding food science and nutrition research: Financial conflicts and scientific integrity. J. Nutr. 2009;139:1051–1053. doi: 10.1097/NT.0b013e3181a4b304.

Source: PubMed

3
S'abonner