Electrochemical Skin Conductance as a Marker of Painful Oxaliplatin-Induced Peripheral Neuropathy

Jean-Baptiste Delmotte, Abdulkarim Tutakhail, Kahina Abdallah, Pauline Reach, Marguerite D'Ussel, Gael Deplanque, Hélène Beaussier, François Coudoré, Jean-Baptiste Delmotte, Abdulkarim Tutakhail, Kahina Abdallah, Pauline Reach, Marguerite D'Ussel, Gael Deplanque, Hélène Beaussier, François Coudoré

Abstract

Purpose: Oxaliplatin is a platinum compound widely used in gastrointestinal cancer treatment but produces dose-limiting peripheral neuropathy. New insights into oxaliplatin-induced peripheral neuropathy (OIPN) assessment are needed to detect more effectively this condition. In this context, we conducted Canaloxa study, a prospective preliminary clinical trial that aimed to investigate how Electrochemical Skin Conductance (ESC), a parameter used in small fiber neuropathy assessment, could be helpful in OIPN diagnosis.

Methods: Cancer patients treated for at least three months with oxaliplatin and suffering from clinically OIPN were included. Electrochemical Skin Conductance, thermal thresholds, and neuropathic pain were assessed in all included patients.

Results: During one year, 36 patients were included. The main result was the correlation between ESC and Neuropathic Pain Symptom Inventory score for hands (rho value = -0.69, p < 0.0001) and feet (rho value = -0.79, p < 0.0001). ESC values were lower in neuropathic patients with painful symptoms than in ones without painful symptoms (p = 0.0003 and p < 0.0001 for hands and feet, respectively). No correlation was observed between ESC and thermal thresholds.

Conclusion: These preliminary data suggest that ESC could be a useful objective marker of painful oxaliplatin-induced neuropathy and could complement the use of subjective clinical scales. This study was prospectively registered on clinicaltrials.gov (NCT02827916) before patient recruitment has begun.

Figures

Figure 1
Figure 1
Distribution of the ESC values measured on hands (a) and feet (b) of oxaliplatin-treated patients (n = 36). High conductance values (ESC > 60 μS): no dysfunction of the sweat function. Intermediate conductance values (40-60 μS): first signs of a possible peripheral autonomic neuropathy. Low conductance values (ESC < 40 μS): dysfunction of the sweat function and advanced peripheral neuropathy. ESC: Electrochemical Skin Conductance. μs: microSiemens.
Figure 2
Figure 2
ESC values measured on hands and feet according to the presence or absence of a painful neuropathy. ESC values were lower in neuropathic patients with painful symptoms than in patients without painful symptoms: 55.4 ± 19.7 vs 77.6 ± 7.9 μS (p = 0.0003) and 55.0 ± 15.0 vs 78.1 ± 6.6 μS (p < 0.0001) for hands and feet, respectively.
Figure 3
Figure 3
Correlation graphs between Electrochemical Conductance (ESC) in μSiemens (μS) of hands (a) and feet (b) of treated patients and Neuropathic Pain Symptom Inventory (NPSI) scores (n = 36). ESC are correlated with NPSI score for hands (rho = -0.69, p < 0.0001) and feet (rho value = -0.79, p < 0.0001).
Figure 4
Figure 4
Receiver operating characteristics (ROC) curves for ESC of hands (a) and feet (b) using a positive NPSI score as reference. AUC = 0,86 for (a) and AUC = 0,95 for (b). (20 patients with painful symptoms and 16 patients without painful symptoms).

References

    1. Graham J., Muhsin M., Kirkpatrick P. Oxaliplatin. Nature Reviews Drug Discovery. 2004;3(1):11–12. doi: 10.1038/nrd1287.
    1. André T., Boni C., Navarro M., et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. Journal of Clinical Oncology. 2009;27(19):3109–3116. doi: 10.1200/jco.2008.20.6771.
    1. Haller D. G., Tabernero J., Maroun J., et al. Capecitabine plus oxaliplatin compared with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. Journal of Clinical Oncology. 2011;29(11):1465–1471. doi: 10.1200/jco.2010.33.6297.
    1. Xu W., Kuang M., Gong Y., Cao C., Chen J., Tang C. Survival benefit and safety of the combinations of FOLFOXIRI ± bevacizumab versus the combinations of FOLFIRI ± bevacizumab as first-line treatment for unresectable metastatic colorectal cancer: A meta-analysis. OncoTargets and Therapy. 2016;9:4833–4842. doi: 10.2147/OTT.S104981.
    1. Raymond E., Faivre S., Woynarowski J. M., Chaney S. G. Oxaliplatin: Mechanism of action and antineoplastic activity. Seminars in Oncology. 1998;25(2):4–12.
    1. Attal N., Bouhassira D., Gautron M., et al. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: A prospective quantified sensory assessment study. PAIN. 2009;144(3):245–252. doi: 10.1016/j.pain.2009.03.024.
    1. Binder A., Stengel M., Maag R., et al. Pain in oxaliplatin-induced neuropathy - Sensitisation in the peripheral and central nociceptive system. European Journal of Cancer. 2007;43(18):2658–2663. doi: 10.1016/j.ejca.2007.07.030.
    1. Kokotis P., Schmelz M., Kostouros E., Karandreas N., Dimopoulos M.-A. Oxaliplatin-Induced neuropathy: a long-term clinical and neurophysiologic follow-up study. Clinical Colorectal Cancer. 2016;15(3):e133–e140. doi: 10.1016/j.clcc.2016.02.009.
    1. Mols F., Beijers T., Vreugdenhil G., Van De Poll-Franse L. Chemotherapy-induced peripheral neuropathy and its association with quality of life: A systematic review. Supportive Care in Cancer. 2014;22(8):2261–2269. doi: 10.1007/s00520-014-2255-7.
    1. Stefansson M., Nygren P. Oxaliplatin added to fluoropyrimidine for adjuvant treatment of colorectal cancer is associated with long-term impairment of peripheral nerve sensory function and quality of life. Acta Oncologica. 2016;55(9-10):1227–1235. doi: 10.1080/0284186X.2016.1197420.
    1. Tofthagen C., Donovan K. A., Morgan M. A., Shibata D., Yeh Y. Oxaliplatin-induced peripheral neuropathy’s effects on health-related quality of life of colorectal cancer survivors. Supportive Care in Cancer. 2013;21(12):3307–3313. doi: 10.1007/s00520-013-1905-5.
    1. Saif M. W., Reardon J. Management of oxaliplatin-induced peripheral neuropathy. Therapeutics and Clinical Risk Management. 2005;1:249–258.
    1. National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 4.0. , 29 Aug 2016.
    1. Trivedi M. S., Hershman D. L., Crew K. D. Management of Chemotherapy-induced peripheral neuropathy. American Journal of Hematology / Oncology®. 2015;11
    1. Calvet J., Dupin J., Winiecki H., Schwarz P. Assessment of small fiber neuropathy through a quick, simple and non invasive method in a german diabetes outpatient clinic. Experimental and Clinical Endocrinology & Diabetes. 2013;121(02):80–83. doi: 10.1055/s-0032-1323777.
    1. Smith A. G., Lessard M., Reyna S., Doudova M., Singleton J. R. The diagnostic utility of Sudoscan for distal symmetric peripheral neuropathy. Journal of Diabetes and its Complications. 2014;28:511–516. doi: 10.1016/j.jdiacomp.2014.02.013.
    1. Devigili G., Tugnoli V., Penza P., et al. The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology. Brain. 2008;131, part 7:1912–1925. doi: 10.1093/brain/awn093.
    1. Saad M., Psimaras D., Tafani C., et al. Quick, non-invasive and quantitative assessment of small fiber neuropathy in patients receiving chemotherapy. Journal of Neuro-Oncology. 2016;127(2):373–380. doi: 10.1007/s11060-015-2049-x.
    1. Casellini C. M., Parson H. K., Richardson M. S., Nevoret M. L., Vinik A. I. Sudoscan, a noninvasive tool for detecting diabetic small fiber neuropathy and autonomic dysfunction. Diabetes Technology & Therapeutics. 2013;15(11):948–953. doi: 10.1089/dia.2013.0129.
    1. Novak P. Electrochemical skin conductance correlates with skin nerve fiber density. Frontiers in Aging Neuroscience. 2016;8 doi: 10.3389/fnagi.2016.00199.
    1. Freedman B. I., Smith S. C., Bagwell B. M., Xu J., Bowden D. W., Divers J. Electrochemical skin conductance in diabetic kidney disease. American Journal of Nephrology. 2015;41:438–447. doi: 10.1159/000437342.
    1. Bouhassira D., Attal N., Fermanian J., et al. Development and validation of the Neuropathic Pain Symptom Inventory. PAIN. 2004;108(3):248–257. doi: 10.1016/j.pain.2003.12.024.
    1. Shy M. E., Frohman E. M., So Y. T., et al. Quantitative sensory testing: report of the therapeutics and technology assessment subcommittee of the American academy of neurology. Neurology. 2003;60(6):898–904. doi: 10.1212/01.wnl.0000058546.16985.11.
    1. Rolke R., Baron R., Maier C., et al. Quantitative sensory testing in the German research network on neuropathic pain (DFNS): standardized protocol and reference values. PAIN. 2006;123:231–243.
    1. CHOO JCSKK. Temperature sensitivity of the body surface over the life span. Somatosensory & Motor Research. 1998;15:13–28.
    1. Mandrekar J. N. Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology. 2010;5(9):1315–1316. doi: 10.1097/JTO.0b013e3181ec173d.
    1. Vinik A. I., Smith A. G., Singleton J. R., et al. Normative values for electrochemical skin conductances and impact of ethnicity on quantitative assessment of sudomotor function. Diabetes Technology & Therapeutics. 2016;18(6):391–398. doi: 10.1089/dia.2015.0396.
    1. Luo F. R., Wyrick S. D., Chaney S. G. Comparative neurotoxicity of oxaliplatin, ormaplatin, and their biotransformation products utilizing a rat dorsal root ganglia in vitro explant culture model. Cancer Chemotherapy and Pharmacology. 1999;44(1):29–38. doi: 10.1007/s002800050941.
    1. Koskinen M. J., Kautio A.-L., Haanpää M. L., et al. Intraepidermal nerve fibre density in cancer patients receiving adjuvant chemotherapy. Anticancer Reseach. 2011;31(12):4413–4416.
    1. Massicot F., Hache G., David L., et al. P2X7 cell death receptor activation and mitochondrial impairment in oxaliplatin-induced apoptosis and neuronal injury: cellular mechanisms and in vivo approach. PLoS ONE. 2013;8(6):p. e66830. doi: 10.1371/journal.pone.0066830.
    1. Kosturakis A. K., He Z., Li Y., et al. Subclinical peripheral neuropathy in patients with multiple myeloma before chemotherapy is correlated with decreased fingertip innervation density. Journal of Clinical Oncology. 2014;32(28):3156–3162. doi: 10.1200/JCO.2013.54.5418.
    1. Park S. B., Lin C. S. Y., Krishnan A. V., Goldstein D., Friedlander M. L., Kiernan M. C. Long-term neuropathy after oxaliplatin treatment: challenging the dictum of reversibility. The Oncologist. 2011;16(5):708–716. doi: 10.1634/theoncologist.2010-0248.
    1. Rajan S., Campagnolo M., Callaghan B., Gibbons C. H. Sudomotor function testing by electrochemical skin conductance: does it really measure sudomotor function? Clinical Autonomic Research. 2018 doi: 10.1007/s10286-018-0540-0.
    1. Selvarajah D., Cash T., Davies J. SUDOSCAN: a simple, rapid, and objective method with potential for screening for diabetic peripheral neuropathy. PLoS ONE. 2015;10(10) doi: 10.1371/journal.pone.0138224.e0138224
    1. Darian-Smith I., Johnson K. O., LaMotte C., Shigenaga Y., Kenins P., Champness P. Warm fibers innervating palmar and digital skin of the monkey: Responses to thermal stimuli. Journal of Neurophysiology. 1979;42(5):1297–1315. doi: 10.1152/jn.1979.42.5.1297.
    1. Lefaucheur J.-P., Wahab A., Planté-Bordeneuve V., et al. Diagnosis of small fiber neuropathy: A comparative study of five neurophysiological tests. Neurophysiologie Clinique / Clinical Neurophysiology. 2015;45(6):445–455. doi: 10.1016/j.neucli.2015.09.012.
    1. Tobin K., Giuliani M. J., Lacomis D. Comparison of different modalities for detection of small fiber neuropathy. Clinical Neurophysiology. 1999;110(11):1909–1912. doi: 10.1016/S1388-2457(99)00164-9.
    1. Tin S. N. W., Andrade D. C. d., Goujon C., Planté-Bordeneuve V., Créange A., Lefaucheur J.-P. Sensory correlates of pain in peripheral neuropathies. Clinical Neurophysiology. 2014;125(5):1048–1058. doi: 10.1016/j.clinph.2013.09.038.

Source: PubMed

3
S'abonner