Safety Profile and Lack of Immunogenicity of IncobotulinumtoxinA in Pediatric Spasticity and Sialorrhea: A Pooled Analysis

Steffen Berweck, Marta Banach, Deborah Gaebler-Spira, Henry G Chambers, A S Schroeder, Thorin L Geister, Michael Althaus, Angelika Hanschmann, Matteo Vacchelli, Michaela V Bonfert, Florian Heinen, Edward Dabrowski, Steffen Berweck, Marta Banach, Deborah Gaebler-Spira, Henry G Chambers, A S Schroeder, Thorin L Geister, Michael Althaus, Angelika Hanschmann, Matteo Vacchelli, Michaela V Bonfert, Florian Heinen, Edward Dabrowski

Abstract

IncobotulinumtoxinA, a pure botulinumtoxinA formulation, is free of accessory proteins. This analysis provides pooled safety data from phase 3 trials of children/adolescents (2-17 years), investigating incobotulinumtoxinA for the treatment of spasticity associated with cerebral palsy (at doses ≤20 U/kg (max. 500 U) per injection cycle (IC) for ≤6 ICs; three trials) or sialorrhea associated with neurologic disorders (at total doses of 20-75 U per IC for ≤4 ICs; one trial) for ≤96 weeks. Safety endpoints included the incidences of different types of treatment-emergent adverse events (TEAEs) and immunogenicity. IncobotulinumtoxinA dose groups were combined. Of 1159 patients (mean age 7.3 years, 60.4% males) treated with incobotulinumtoxinA, 3.9% experienced treatment-related TEAEs, with the most common being injection site reactions (1.3%) (both indications), muscular weakness (0.7%) (spasticity), and dysphagia (0.2%) (sialorrhea). Two patients (0.2%) experienced a treatment-related treatment-emergent serious adverse event, and 0.3% discontinued the study due to treatment-related TEAEs. No botulinumtoxinA-naïve patients developed neutralizing antibodies (NAbs) after incobotulinumtoxinA. All children/adolescents with known pre-treatment status and testing positive for Nabs at final visit (n = 7) were previously treated with a botulinumtoxinA other than incobotulinumtoxinA. IncobotulinumtoxinA was shown to be safe, with very few treatment-related TEAEs in a large, diverse cohort of children/adolescents with chronic conditions requiring long-term treatment and was without new NAb formation in treatment-naïve patients.

Trial registration: ClinicalTrials.gov NCT01893411 NCT01905683 NCT02002884 NCT02270736.

Keywords: all movement disorders; all pediatric; antibodies; botulinum toxin; immunogenicity; incobotulinumtoxinA; muscle spasticity; safety; sialorrhea.

Conflict of interest statement

Steffen Berweck has received consultant fees from Ipsen Pharma and Merz Therapeutics and speaker fees from Ipsen Pharma, Pharm Allergan, and Merz Therapeutics. Marta Banach has served as a consultant and speaker and participated in an advisory board for Merz Pharmaceuticals and has served as a speaker for Allergan, Ipsen, and Kedrion. Deborah Gaebler-Spira has served as a consultant for Teva and Kashiva. Henry G. Chambers serves as a consultant for Orthopediatrics Corp and Allergan Corporation. A. Sebastian Schroeder has received speaker’s honoraria from and participated in advisory boards for Allergan PLC, Ipsen Biopharmaceuticals, and Merz Therapeutics. Thorin L. Geister, Michael Althaus, Angelika Hanschmann, and Matteo Vacchelli are all employees of Merz Therapeutics. Michaela Bonfert has received research grants from the HABA Foundation, the Deutsche Rentenversicherung, the Deutsche Migräne und Kopfschmerzgesellschaft, the European Research Council, ERA-NET Neuron, CSL Behring, and the ZNS-Hannelore Kohl Foundation and a research scholarship of the Bavarian Gender Equality Grant of the Free State of Bavaria, Germany. Edward Dabrowski has participated in an advisory board and speaker bureau for Ipsen Biopharmaceuticals. Florian Heinen has received speaker’s honoraria from Allergan PLC, Desitin, Ipsen Biopharmaceuticals, Merz Therapeutics, and Novartis and unrestricted educational grants from Allergan and Merz Therapeutics.

Figures

Figure 1
Figure 1
The incidence of TEAEs by IC for pediatric patients with spasticity or sialorrhea treated with incobotulinumtoxinA a. a All patients with spasticity were enrolled in TIM (Treatment with IncobotulinumtoxinA in Movement) [17], TIMO (Treatment with IncobotulinumtoxinA in Movement Open-label) [18], or XARA (incobotulinumtoXinA in aRm treatment in cerebral pAlsy) [19], and patients with sialorrhea were enrolled in SIPEXI (Sialorrhea Pediatric Xeomin Investigation) [20]. IC, injection cycle; TEAE, treatment-emergent adverse event; TEAESI, treatment-emergent adverse event of special interest (potentially indicative of toxin spread); TESAE, treatment-emergent serious adverse event; TR, treatment-related.
Figure 2
Figure 2
The incidence of TEAEs by IC for pediatric patients with spasticity treated with incobotulinumtoxinA a. a All patients were enrolled in TIM (Treatment with IncobotulinumtoxinA in Movement) [17], TIMO (Treatment with IncobotulinumtoxinA in Movement Open-label) [18], or XARA (incobotulinumtoXinA in aRm treatment in cerebral pAlsy) [19]. IC, injection cycle; TEAE, treatment-emergent adverse event; TEAESI, treatment-emergent adverse event of special interest (potentially indicative of toxin spread); TESAE, treatment-emergent serious adverse event; TR, treatment-related.
Figure 3
Figure 3
The incidence of TEAEs by IC for pediatric patients with sialorrhea treated with incobotulinumtoxinA a. a All patients enrolled in SIPEXI (Sialorrhea Pediatric Xeomin Investigation) [20]. IC, injection cycle; TEAE, treatment-emergent adverse event; TEAESI, treatment-emergent adverse event of special interest (potentially indicative of toxin spread); TESAE, treatment-emergent serious adverse event; TR, treatment-related.
Figure 4
Figure 4
Simplified overview of the study designs of the four phase 3 pediatric studies TIM, TIMO, XARA, and SIPEXI a. a Full methodologic details can be found in: TIM [17], TIMO [18], XARA [19], and SIPEXI [20]. b Maximum duration of treatment was 96 weeks for those from the TIM study who entered TIMO. AB: For TIM patients who did not progress to TIMO, AB was performed at the SV and the EOS visit (e.g., after two ICs). For those enrolled in TIM and who progressed to TIMO, AB was performed at the TIM SV and the TIMO EOS visit (e.g., after up to six ICs). For patients newly enrolled in TIMO and for patients in XARA and SIPEXI, AB was performed at the SV and the EOS visit (e.g., after four ICs). AB was restricted to patients weighing ≥21 kg body weight in the spasticity studies and ≥30 kg body weight in the sialorrhea study to reduce the burden of further blood sample requirements on smaller, younger patients. AB, antibody testing; BW, body weight; EOS, end of study; IC, injection cycle; LL, lower limb; MP, main period; OLEX, open-label extension; SIPEXI, Sialorrhea Pediatric Xeomin Investigation; SV, screening visit; TIM, Treatment with IncobotulinumtoxinA in Movement; TIMO, Treatment with IncobotulinumtoxinA in Movement Open-label; U, unit; UL, upper limb; XARA, incobotulinumtoXinA in aRm treatment in cerebral pAlsy.

References

    1. Hareb F., Bertoncelli C.M., Rosello O., Rampal V., Solla F. Botulinum toxin in children with cerebral palsy: An update. Neuropediatrics. 2020;51:1–5. doi: 10.1055/s-0039-1694988.
    1. Sätilä H. Over 25 years of pediatric botulinum toxin treatments: What have we learned from injection techniques, doses, dilutions, and recovery of repeated injections? Toxins. 2020;12:440. doi: 10.3390/toxins12070440.
    1. Hung S.A., Liao C.L., Lin W.P., Hsu J.C., Guo Y.H., Lin Y.C. Botulinum toxin injections for treatment of drooling in children with cerebral palsy: A systematic review and meta-analysis. Children. 2021;8:1089. doi: 10.3390/children8121089.
    1. Peeraully R., Lam C., Mediratta N., Patel R., Williams A., Shenoy M., Fraser N. Intradetrusor injection of botulinum toxin A in children: A 10-year single centre experience. Int. Urol. Nephrol. 2019;51:1321–1327. doi: 10.1007/s11255-019-02185-3.
    1. Mahan M., Engel J.M. The resurgence of botulinum toxin injection for strabismus in children. Curr. Opin. Ophthalmol. 2017;28:460–464. doi: 10.1097/ICU.0000000000000408.
    1. Carr W.W., Jain N., Sublett J.W. Immunogenicity of botulinum toxin formulations: Potential therapeutic implications. Adv. Ther. 2021;38:5046–5064. doi: 10.1007/s12325-021-01882-9.
    1. Riva A., Amadori E., Vari M.S., Spalice A., Belcastro V., Viri M., Capodiferro D., Romeo A., Verrotti A., Delphi panel experts’ group et al. Impact and management of drooling in children with neurological disorders: An Italian Delphi consensus. Ital. J. Pediatr. 2022;48:118. doi: 10.1186/s13052-022-01312-8.
    1. Heinen F., Desloovere K., Schroeder A.S., Berweck S., Borggraefe I., van Campenhout A., Andersen G.L., Aydin R., Becher J.G., Bernert G., et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur. J. Paediatr. Neurol. 2010;14:45–66. doi: 10.1016/j.ejpn.2009.09.005.
    1. Bellows S., Jankovic J. Immunogenicity associated with botulinum toxin treatment. Toxins. 2019;11:491. doi: 10.3390/toxins11090491.
    1. Frevert J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R D. 2015;15:1–9. doi: 10.1007/s40268-014-0077-1.
    1. Hefter H., Brauns R., Ürer B., Rosenthal D., Albrecht P. Effective long-term treatment with incobotulinumtoxin (Xeomin®) without neutralizing antibody induction: A monocentric, cross-sectional study. J. Neurol. 2020;267:1340–1347. doi: 10.1007/s00415-019-09681-7.
    1. Samadzadeh S., Ürer B., Brauns R., Rosenthal D., Lee J.I., Albrecht P., Hefter H. Clinical implications of difference in antigenicity of different botulinum neurotoxin type A preparations: Clinical take-home messages from our research pool and literature. Toxins. 2020;12:499. doi: 10.3390/toxins12080499.
    1. Car H., Bogucki A., Bonikowski M., Dec-Ćwiek M., Drużdż A., Koziorowski D., Rudzińska-Bar M., Sarzyńska-Długosz I., Sławek J. Botulinum toxin type-A preparations are not the same medications—Basic science (Part 1) Neurol. Neurochir. Pol. 2021;55:133–140. doi: 10.5603/PJNNS.a2021.0027.
    1. Albrecht P., Jansen A., Lee J.I., Moll M., Ringelstein M., Rosenthal D., Bigalke H., Aktas O., Hartung H.P., Hefter H. High prevalence of neutralizing antibodies after long-term botulinum neurotoxin therapy. Neurology. 2019;92:e48–e54. doi: 10.1212/WNL.0000000000006688.
    1. Lacroix-Desmazes S., Mouly S.M., Popoff M.-R., Colosimo C. Systematic analysis of botulinum neurotoxin type A immunogenicity in clinical studies. Basal Ganglia. 2017;9:12–17. doi: 10.1016/j.baga.2017.06.001.
    1. Merz Pharmaceuticals, L.L.C. Xeomin-Incobotulinumtoxina Injection. Package Insert. April 2021. [(accessed on 10 March 2022)]; Available online: .
    1. Dabrowski E., Chambers H.G., Gaebler-Spira D., Banach M., Kaňovský P., Dersch H., Althaus M., Geister T.L., Heinen F. IncobotulinumtoxinA efficacy/safety in upper-limb spasticity in pediatric cerebral palsy: Randomized controlled trial. Pediatr. Neurol. 2021;123:10–20. doi: 10.1016/j.pediatrneurol.2021.05.014.
    1. Heinen F., Kaňovský P., Schroeder A.S., Chambers H.G., Dabrowski E., Geister T.L., Hanschmann A., Martinez-Torres F.J., Pulte I., Banach M., et al. IncobotulinumtoxinA for the treatment of lower-limb spasticity in children and adolescents with cerebral palsy: A Phase 3 study. J. Pediatr. Rehabil. Med. 2021;14:183–197. doi: 10.3233/PRM-210040.
    1. Kaňovský P., Heinen F., Schroeder A.S., Chambers H.G., Dabrowski E., Geister T.L., Hanschmann A., Martinez-Torres F.J., Pulte I., Banach M., et al. Safety and efficacy of repeat long-term incobotulinumtoxinA treatment for lower limb or combined upper/lower limb spasticity in children with cerebral palsy. J. Pediatr. Rehabil. Med. 2022;15:113–127. doi: 10.3233/PRM-210041.
    1. Berweck S., Bonikowski M., Kim H., Althaus M., Flatau-Baqué B., Mueller D., Banach M.D. Placebo-controlled clinical trial of incobotulinumtoxinA for sialorrhea in children: SIPEXI. Neurology. 2021;97:e1425–e1436. doi: 10.1212/WNL.0000000000012573.
    1. Palisano R., Rosenbaum P., Walter S., Russell D., Wood E., Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997;39:214–223. doi: 10.1111/j.1469-8749.1997.tb07414.x.
    1. Dimitrova R., Kim H., Meilahn J., Chambers H.G., Racette B.A., Bonikowski M., Park E.S., McCusker E., Liu C., Brin M.F. Efficacy and safety of onabotulinumtoxinA with standardized physiotherapy for the treatment of pediatric lower limb spasticity: A randomized, placebo-controlled, phase III clinical trial. NeuroRehabilitation. 2022;50:33–46. doi: 10.3233/NRE-210070.
    1. Szpindel A., Myers K.A., Ng P., Dorais M., Koclas L., Pigeon N., Shevell M., Oskoui M. Epilepsy in children with cerebral palsy: A data linkage study. Dev. Med. Child Neurol. 2022;64:259–265. doi: 10.1111/dmcn.15028.
    1. León-Valenzuela A., Palacios J.S., Del Pino Algarrada R. IncobotulinumtoxinA for the treatment of spasticity in children with cerebral palsy—A retrospective case series focusing on dosing and tolerability. BMC Neurol. 2020;20:126. doi: 10.1186/s12883-020-01702-7.
    1. Dressler D., Paus S., Seitzinger A., Gebhardt B., Kupsch A. Long-term efficacy and safety of incobotulinumtoxinA injections in patients with cervical dystonia. J. Neurol. Neurosurg. Psychiatry. 2013;84:1014–1019. doi: 10.1136/jnnp-2012-303608.
    1. Wissel J., Bensmail D., Ferreira J.J., Molteni F., Satkunam L., Moraleda S., Rekand T., McGuire J., Scheschonka A., Flatau-Baqué B., et al. Safety and efficacy of incobotulinumtoxinA doses up to 800 U in limb spasticity: The TOWER study. Neurology. 2017;88:1321–1328. doi: 10.1212/WNL.0000000000003789.
    1. Jost W.H., Friedman A., Michel O., Oehlwein C., Sławek J., Bogucki A., Ochudlo S., Banach M., Pagan F., Flatau-Baqué B., et al. SIAXI: Placebo-controlled, randomized, double-blind study of incobotulinumtoxinA for sialorrhea. Neurology. 2019;92:e1982–e1991. doi: 10.1212/WNL.0000000000007368.
    1. Coleman W.P., 3rd, Sattler G., Weissenberger P., Hast M.A., Hanschmann A. Safety of incobotulinumtoxinA in the treatment of facial lines: Results from a pooled analysis of randomized, prospective, controlled clinical studies. Dermatol. Surg. 2017;43((Suppl. 3)):S293–S303. doi: 10.1097/DSS.0000000000001409.
    1. Koman L.A., Brashear A., Rosenfeld S., Chambers H., Russman B., Rang M., Root L., Ferrari E., Garcia de Yebenes Prous J., Smith B.P., et al. Botulinum toxin type a neuromuscular blockade in the treatment of equinus foot deformity in cerebral palsy: A multicenter, open-label clinical trial. Pediatrics. 2001;108:1062–1071. doi: 10.1542/peds.108.5.1062.
    1. Oshima M., Deitiker P., Hastings-Ison T., Aoki K.R., Graham H.K., Atassi M.Z. Antibody responses to botulinum neurotoxin type A of toxin-treated spastic equinus children with cerebral palsy: A randomized clinical trial comparing two injection schedules. J. Neuroimmunol. 2017;306:31–39. doi: 10.1016/j.jneuroim.2017.02.014.
    1. Delgado M.R., Bonikowski M., Carranza-Del Río J., Dursun N., Bonikowski M., Aydin R., Maciag-Tymecka I., Oleszek J., Dabrowski E., Grandoulier A.S., et al. Safety and efficacy of repeat open-label abobotulinumtoxinA treatment in pediatric cerebral palsy. J. Child Neurol. 2017;32:1058–1064. doi: 10.1177/0883073817729918.
    1. Delgado M.R., Tilton A., Carranza-Del Río J., Dursun N., Bonikowski M., Aydin R., Maciag-Tymecka I., Oleszek J., Dabrowski E., Grandoulier A.S., et al. Efficacy and safety of abobotulinumtoxinA for upper limb spasticity in children with cerebral palsy: A randomized repeat-treatment study. Dev. Med. Child Neurol. 2021;63:592–600. doi: 10.1111/dmcn.14733.
    1. Frevert J., Dressler D. Clinical Relevance of Immunoresistance to Botulinum Therapy. In: Rosales R.L., Dressler D., editors. Botulinum Toxin Therapy Manual for Dystonia and Spasticity. IntechOpen; London, UK: 2016.
    1. Benecke R. Clinical relevance of botulinum toxin immunogenicity. BioDrugs. 2012;26:e1–e9. doi: 10.2165/11599840-000000000-00000.
    1. Frevert J. Content of botulinum neurotoxin in Botox®/Vistabel®, Dysport®/Azzalure®, and Xeomin®/Bocouture®. Drugs R D. 2010;10:67–73. doi: 10.2165/11584780-000000000-00000.
    1. Kerscher M., Wanitphakdeedecha R., Trindade de Almeida A., Maas C., Frevert J. IncobotulinumtoxinA: A highly purified and precisely manufactured botulinum neurotoxin type A. J. Drugs Dermatol. 2019;18:52–57.
    1. Rahman E., Alhitmi H.K., Mosahebi A. Immunogenicity to botulinum toxin type A: A systematic review with meta-analysis across therapeutic indications. Aesthet. Surg. J. 2022;42:106–120. doi: 10.1093/asj/sjab058.
    1. Bonikowski M., Sławek J. Safety and efficacy of Botulinum toxin type A preparations in cerebral palsy—An evidence-based review. Neurol. Neurochir. Pol. 2021;55:158–164. doi: 10.5603/PJNNS.a2021.0032.
    1. FDA Center for Drug Evaluation and Research Administration, U.S. Food and Drug Administration. Guidance for Industry: Immunogenicity Assessment for Therapeutic Protein Products. [(accessed on 17 March 2022)];FDA. 2014 Available online: .
    1. EMA. European Medicines Agency Guideline on Immunogenicity Assessment of Therapeutic Proteins. EMA. 2017. [(accessed on 17 March 2022)]. Available online: .
    1. Park J.Y., Sunga O., Wanitphakdeedecha R., Frevert J. Neurotoxin impurities: A review of threats to efficacy. Plast. Reconstr. Surg. Glob. Open. 2020;8:e2627. doi: 10.1097/GOX.0000000000002627.
    1. Ashworth B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner. 1964;192:540–542.
    1. Mier R.J., Bachrach S.J., Lakin R.C., Barker T., Childs J., Moran M. Treatment of sialorrhea with glycopyrrolate: A double-blind, dose-ranging study. Arch. Pediatr. Adolesc. Med. 2000;154:1214–1218. doi: 10.1001/archpedi.154.12.1214.

Source: PubMed

3
購読する