Emulsion Stability Modulates Gastric Secretion and Its Mixing with Emulsified Fat in Healthy Adults in a Randomized Magnetic Resonance Imaging Study

Dian Liu, Helen L Parker, Jelena Curcic, Sebastian Kozerke, Andreas Steingoetter, Dian Liu, Helen L Parker, Jelena Curcic, Sebastian Kozerke, Andreas Steingoetter

Abstract

Background: Oil-in-water emulsions have recently become of interest to nutritional sciences because of their ability to influence gastrointestinal digestive processes and ultimately benefit human health. MRI offers the potential to noninvasively characterize the interaction between emulsified lipids and gastric secretion within the stomach.

Objectives: We determined noninvasively how emulsion stability modulates volumes of fat and secretion, layering of fat, and the mixing of emulsified fat with secretion within the stomach. This required the development of MRI technology for quantifying fat and secretion concentrations inside the stomach.

Methods: Twenty-one healthy adults [13 men, mean ± SD age: 22.5 ± 2.5 y, mean ± SD body mass index (in kg/m2): 22.7 ± 1.8] were analyzed in a single-blind, randomized, parallel design. MRI was used to acquire the distributions of fat and secretion in the stomach after ingestion of 2 emulsions: a stable emulsion (E1) or an unstable emulsion (E4) with 20% fat fraction and ∼0.3 mm droplet sizes. Layer, volume, and mixing variables were fitted to the data and compared between the 2 emulsions.

Results: The intragastric mixing between fat and secretion was better with the E4 than the E1 [increase in content heterogeneity of 17.1% (95% CI: 12.3%, 21.9%)]. The E4 demonstrated a linear relation [slope 1.57 (95% CI: 0.86, 2.29)] between the degree of layering and mixing. In contrast, no such relation was detected for the E1. Accumulated secretion volume in the stomach was lower with the E4 [decrease in volume variable ks of 2.3 (95% CI: -3.9, -0.7)] and correlated with the degree of layering (r = 0.62, P < 0.001).

Conclusions: In healthy adults, intragastric fat layering was influenced mainly by the degree of intragastric mixing, rather than the overall dominance of secretion. The E1 triggered a higher accumulation of gastric secretion, which in turn facilitated homogenization of intragastric content in comparison with its unstable counterpart. This trial was registered at clinicaltrials.gov as NCT02602158.

Keywords: fat quantification; gastric physiology; gastric secretion; gastrointestinal function; healthy adults; magnetic resonance imaging; oil-in-water emulsions.

© 2016 American Society for Nutrition.

Source: PubMed

3
購読する