A Review of Wearable Solutions for Physiological and Emotional Monitoring for Use by People with Autism Spectrum Disorder and Their Caregivers

Mohammed Taj-Eldin, Christian Ryan, Brendan O'Flynn, Paul Galvin, Mohammed Taj-Eldin, Christian Ryan, Brendan O'Flynn, Paul Galvin

Abstract

The goal of real-time feedback on physiological changes, stress monitoring and even emotion detection is becoming a technological reality. People in their daily life experience varying emotional states, some of which are negative and which can lead to decreased attention, decreased productivity and ultimately, reduced quality of life. Therefore, having a solution that continuously monitors the physiological signals of the person and assesses his or her emotional well-being could be a very valuable tool. This paper aims to review existing physiological and motional monitoring devices, highlight their features and compare their sensing capabilities. Such technology would be particularly useful for certain populations who experience rapidly changing emotional states such as people with autism spectrum disorder and people with intellectual disabilities. Wearable sensing devices present a potential solution that can support and complement existing behavioral interventions. This paper presents a review of existing and emerging products in the market. It reviews the literature on state-of-the-art prototypes and analyzes their usefulness, clinical validity, and discusses clinical perspectives. A small number of products offer reliable physiological internal state monitoring and may be suitable for people with Autism Spectrum Disorder (ASD). It is likely that more promising solutions will be available in the near future. Therefore, caregivers should be careful in their selection of devices that meet the care-receiver's personal needs and have strong research support for reliability and validity.

Keywords: autism spectrum disorder; challenging behavior; emotional monitoring; physiological monitoring; wearable devices.

Conflict of interest statement

Transcranial direct current stimulation

Figures

Figure 1
Figure 1
Proportion of products designed for general population vs. people with ASD.
Figure 2
Figure 2
The chart shows the proportion of reviewed commercial devices (in Section 4.2) and their type of validation, if validated.

References

    1. Salazar F., Baird G., Chandler S., Tseng E., O’sullivan T., Howlin P., Pickles A., Simonoff E. Co-occurring psychiatric disorders in preschool and elementary school-aged children with autism spectrum disorder. J. Autism Dev. Disord. 2015;45:2283–2294. doi: 10.1007/s10803-015-2361-5.
    1. White S.W., Oswald D., Ollendick T., Scahill L. Anxiety in children andadolescents with autism spectrum disorders. Clin. Psychol. Rev. 2009;29:216–229. doi: 10.1016/j.cpr.2009.01.003.
    1. White S.W., Oswald D., Ollendick T., Scahill L., Strang J.F., Kenworthy L., Daniolos P., Case L., Wills M.C., Martin A., et al. Depression and anxiety symptoms in children and adolescents with autism spectrum disorders without intellectual disability. Res. Autism Spectr. Disord. 2012;6:406–412. doi: 10.1016/j.rasd.2011.06.015.
    1. Tantam D. The challenge of adolescents and adults with asperger syndrome. Child Adolesc. Psychiatr. Clin. N. Am. 2003;12:143–163. doi: 10.1016/S1056-4993(02)00053-6.
    1. Farrugia S., Hudson J. Anxiety in adolescents with Asperger syndrome: Negative thoughts, behavioural problems, and life interference. Focus Autism Dev. Disabil. 2006;21:25–35. doi: 10.1177/10883576060210010401.
    1. Bitsika V., Sharpley C.F. Which Aspects of Challenging Behaviour Are Associated with Anxiety across two Age Groups of Young Males with an Autism Spectrum Disorder? J. Dev. Phys. Disabil. 2016;28:685–701. doi: 10.1007/s10882-016-9502-4.
    1. Fitzpatrick S.E., Srivorakiat L., Wink L.K., Pedapati E.V., Erickson C.A. Aggression in autism spectrum disorder: Presentation and treatment options. Neuropsychiatr. Dis. Treat. 2016;12:1525–1538. doi: 10.2147/NDT.S84585.
    1. Bird G., Cook R. Mixed emotions: The contribution of alexithymia to the emotional symptoms of autism. Transl. Psychiatry. 2013;3:e285. doi: 10.1038/tp.2013.61.
    1. Malik M., Bigger J.T., Camm A.J., Kleiger R.E., Malliani A., Moss A.J., Schwartz P.J. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996;14:354–381. doi: 10.1093/oxfordjournals.eurheartj.a014868.
    1. Jeyhani V., Mahdiani S., Peltokangas M., Vehkaoja A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals; Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Milan, Italy. 25–29 August 2015; pp. 5952–5955.
    1. Moraes J.L., Rocha M.X., Vasconcelos G.G., Vasconcelos Filho J.E., de Albuquerque V.H.C., Alexandria A.R. Advances in photopletysmography signal analysis for biomedical applications. Sensors. 2018;18:1894. doi: 10.3390/s18061894.
    1. Yasuma F., Hayano J. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125:683–690. doi: 10.1378/chest.125.2.683.
    1. Tonhajzerova I., Mestanik M., Mestanikova A., Jurko A. Respiratory sinus arrhythmia as a non-invasive index of ‘brain-heart’ interaction in stress. Indian J. Med. Res. 2016;144:815–822. doi: 10.4103/ijmr.IJMR_1447_14.
    1. Vinkers C.H., Penning R., Hellhammer J., Verster J.C., Klaessens J.H., Olivier B., Kalkman C.J. The effect of stress on core and peripheral body temperature in humans. Stress. 2013;16:520–530. doi: 10.3109/10253890.2013.807243.
    1. Villarejo M.V., Zapirain B.G., Zorrilla A.M. A Stress Sensor Based on Galvanic Skin Response (GSR) Controlled by ZigBee. Sensors. 2012;12:6075–6101. doi: 10.3390/s120506075.
    1. Parlak O., Keene S.T., Marais A., Curto V.F., Salleo A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018;4:eaar2904. doi: 10.1126/sciadv.aar2904.
    1. Marvar P.J., Vinh A., Salim T., Lob H.E., Geem D., Ressler K.J., Harrison D.G. T Lymphocytes and Vascular Inflammation Contribute to Stress-Dependent Hypertension. Biol. Psychiatry. 2012;71:774–782. doi: 10.1016/j.biopsych.2012.01.017.
    1. Trapp M., Trapp E.M., Egger J.W., Domej W., Schillaci G., Avian A., Rohrer P.M., Hörlesberger N., Magometschnigg D., Cervar-Zivkovic M., et al. Impact of Mental and Physical Stress on Blood Pressure and Pulse Pressure under Normobaric versus Hypoxic Conditions. PLoS ONE. 2014;9:e89005. doi: 10.1371/journal.pone.0089005.
    1. Xie J., Wen W., Liu G., Chen C., Zhang J., Liu H. Identifying strong stress and weak stress through blood volume pulse; Proceedings of the International Conference on Progress in Informatics and Computing (PIC); Shanghai, China. 23–25 December 2016.
    1. Leader D. VeryWellHealth; [(accessed on 5 October 2018)]. Understanding Oxygen Saturation. Available online: .
    1. Aeschliman S.D., Blue M.S., Williams K.B., Cobb C.M., MacNeill S.R. A preliminary study on oxygen saturation levels of patients during periodontal surgery with and without oral conscious sedation using diazepam. J. Periodontol. 2003;74:1056–1059. doi: 10.1902/jop.2003.74.7.1056.
    1. Health Library—Electromyography (EMG) [(accessed on 10 October 2018)]; Available online: .
    1. Luijcks R., Hermens H.J., Bodar L., Vossen C.J., van Os J., Lousberg R. Experimentally Induced Stress Validated by EMG Activity. PLoS ONE. 2014;9:e95215. doi: 10.1371/journal.pone.0095215.
    1. Taelman J. Ph.D. Thesis. Katholieke Universiteit Leuven; Leuven, Belgium: 2011. [(accessed on 10 September 2018)]. Analysis of Electrophysiological Measurements during Stress Monitoring. Available online: .
    1. Michel C.M., Murray M.M., Lantz G., Gonzalez S., Spinelli L., Petralta R.G.D. EEG source imaging. Clin. Neurophysiol. 2004;115:2195–2222. doi: 10.1016/j.clinph.2004.06.001.
    1. Ryu K., Myung R. Evaluation of mental workload with a combined measure based on physiological indices during a dual task of tracking and mental arithmetic. Inter. J. Ind. Ergon. 2005;35:991–1009. doi: 10.1016/j.ergon.2005.04.005.
    1. Harmony T., Fernández T., Silva J., Bernal J., Díaz-Comas L., Reyes A., Marosi E., Rodríguez M. EEG delta activity: An indicator of attention to internal processing during performance of mental tasks. Int. J. Psychophysiol. 1996;24:161–171. doi: 10.1016/S0167-8760(96)00053-0.
    1. Steensel F.J.A., Bögels S.M., Perrin S. Anxiety disorders in children and adolescents with autistic spectrum disorders: A meta-analysis. Clin. Child. Fam. Psychol. Rev. 2011;14:302–317. doi: 10.1007/s10567-011-0097-0.
    1. Simonoff E., Pickles A., Charman T., Chandler S., Loucas T., Baird G. Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample. J. Am. Acad. Child Adolesc. Psychiatry. 2008;47:921–929. doi: 10.1097/CHI.0b013e318179964f.
    1. Merikangas K.R., He J.P., Burstein M., Swanson S.A., Avenevoli S., Cui L., Benjet C., Georgiades K., Swendsen J. Lifetime Prevalence of Mental Disorders in US Adolescents: Results from the National Comorbidity Study-Adolescent Supplement (NCS-A) J. Am. Acad. Child Adolesc. Psychiatry. 2010;49:980–989. doi: 10.1016/j.jaac.2010.05.017.
    1. Jansen L.M., Gispen-de Wied C.C., Wiegant V.M., Westenberg H.G., Lahuis B.E., van Engeland H. Autonomic and Neuroendocrine Responses to a Psychosocial Stressor in Adults with Autistic Spectrum Disorder. J. Autism Dev. Disord. 2006;36:891–899. doi: 10.1007/s10803-006-0124-z.
    1. Levine T.P., Stephen J.S., Pescosolido M., Rodino A., Elia G., Lester B. Physiologic arousal to social stress in children with Autism. Res. Autism Spectr. Disord. 2012;6:177–183. doi: 10.1016/j.rasd.2011.04.003.
    1. Goodwin M.S., Groden J., Velicer W.F., Lipsitt L.P., Grace B.M., Hofmann S.G., Groden G. Cardiovascular arousal in individuals with autism. Focus Autism Dev. Disabil. 2006;21:100–123. doi: 10.1177/10883576060210020101.
    1. Berntson G.G., Bigger J.T., Eckberg D.L., Grossman P., Kaufmann P.G., Malik M., Nagaraja H.N., Porges S.W., Saul J.P., Stone P.H., et al. Heart Rate Variability: Origins, Methods, and Interpretive Caveats. Psychophysiology. 1997;34:623–648. doi: 10.1111/j.1469-8986.1997.tb02140.x.
    1. Groden J., Goodwin M.S., Baron M.G., Groden G., Velicer W.F., Lipsitt L.P., Hofmann S.G., Plummer B. Assessing Cardiovascular Responses to Stressors in Individuals With Autism Spectrum Disorders. Focus Autism Dev. Disabil. 2005;20:244–252. doi: 10.1177/10883576050200040601.
    1. Kushki A., Brian J., Dupuis A., Anagnostou E. Functional autonomic nervous system profile in children with autism spectrum disorder. Mol. Autism. 2014;5:39. doi: 10.1186/2040-2392-5-39.
    1. Goodwin M.S., Özdenizci O., Cumpanasoiu C., Tian P., Guo Y., Stedman A., Peura C., Mazefsky C., Siegel M., Erdoğmuş D., et al. Predicting imminent aggression onset in minimally-verbal youth with autism spectrum disorder using preceding physiological signals; Proceedings of the 12th EAI International Conference on Pervasive Computing Technologies for Healthcare; New York, NY, USA. 21–24 May 2018; pp. 201–207.
    1. Sappok T., Budczies J., Dziobek I., Bölte S., Dosen A., Diefenbacher A. The missing link: Delayed emotional development predicts challenging behavior in adults with intellectual disability. J. Autism Dev. Dis. 2014;44:786–800. doi: 10.1007/s10803-013-1933-5.
    1. Rojahn J., Schroeder S.R., Hoch T.A. Self-Injurious Behavior in Intellectual Disabilities. Volume 2 Elsevier; New York, NY, USA: 2007.
    1. Carr E.G., Durand V.M. Reducing behavior problems through functional communication training. J. Appl. Behav. Anal. 1985;18:111–126. doi: 10.1901/jaba.1985.18-111.
    1. Heslop P., Macaulay F. Hidden Pain?: Self-Injury and People with Learning Disabilities. Bristol Crisis Service for Women; Bristol, UK: 2009.
    1. Leibenluft E., Gardner D.L., Cowdry R.W. Special feature the inner experience of the borderline self-mutilator. J. Personal. Disord. 1987;1:317–324. doi: 10.1521/pedi.1987.1.4.317.
    1. Suyemoto K.L. The functions of self-mutilation. Clin. Psychol. Rev. 1998;18:531–554. doi: 10.1016/S0272-7358(97)00105-0.
    1. Emerson E. Challenging Behaviour: Analysis and Intervention in People with Severe Intellectual Disabilities. Cambridge University Press; New York, NY, USA: 2001.
    1. Hufnagel C., Chambres P., Bertrand P.R., Dutheil F. The need for objective measures of stress in autism. Front. Psychol. 2017;8:1–4. doi: 10.3389/fpsyg.2017.00064.
    1. Majumder S., Mondal T., Deen M.J. Wearable Sensors for Remote Health Monitoring. Sensors. 2017;17:130–175. doi: 10.3390/s17010130.
    1. Patel S., Park H., Bonato P., Chan L., Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012;9:21. doi: 10.1186/1743-0003-9-21.
    1. Kamišalic A., Fister I., Jr., Turkanovic M., Karakatic S. Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors. 2018;18:1714. doi: 10.3390/s18061714.
    1. Gao W., Brooks G.A., Klonoff D.C. Wearable physiological systems and technologies for metabolic monitoring. J. Appl. Physiol. 2017;124:548–556. doi: 10.1152/japplphysiol.00407.2017.
    1. Li Q., Zhang L., Tao X., Ding X. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv. Healthcare Mater. 2017;6:1601371. doi: 10.1002/adhm.201601371.
    1. Nag A., Mukhopadhyay S.C., Kosel J. Wearable Flexible Sensors: A Review. IEEE Sensors J. 2017;17:3949–3960. doi: 10.1109/JSEN.2017.2705700.
    1. Stacey K.M., Hill N., Woods D. Physiological monitoring for healthy military personnel. J. R. Army Med. Corps. 2018;164:290–292. doi: 10.1136/jramc-2017-000851.
    1. Baig M.M., GholamHosseini H., Moqeem A.A., Mirza F., Lindén M. A Systematic Review of Wearable Patient Monitoring Systems—Current Challenges and Opportunities for Clinical Adoption. J. Med. Syst. 2017;41:115. doi: 10.1007/s10916-017-0760-1.
    1. Reinertsen E., Clifford G.D. A review of physiological and behavioral monitoring with digital sensors for neuropsychiatric illnesses. Physiol. Meas. 2018;39:05TR01. doi: 10.1088/1361-6579/aabf64.
    1. Iqbal M.H., Aydin A., Brunckhorst O., Dasgupta P., Ahmed K. A review of wearable technology in medicine. J. R. Soc. Med. 2016;109:372–380. doi: 10.1177/0141076816663560.
    1. Alberdia A., Aztiria A., Basarab A. Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review. J. Biomed. Inform. 2016;59:49–75. doi: 10.1016/j.jbi.2015.11.007.
    1. Peake J.M., Kerr G., Sullivan J.P. A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Front. Physiol. 2018;9:743. doi: 10.3389/fphys.2018.00743.
    1. Koo S.H., Gaul K., Rivera S., Pan T., Fong D. Wearable Technology Design for Autism Spectrum Disorders. Arch. Des. Res. 2018;31:37–55. doi: 10.15187/adr.2018.02.31.1.37.
    1. Cabibihan J., Javed H., Aldosari M., Frazier T.W., Elbashir H. Sensing Technologies for Autism Spectrum Disorder Screening and Intervention. Sensors. 2017;17:46–71. doi: 10.3390/s17010046.
    1. Taj-Eldin M., O’Flynn B., Galvin P., Ryan C. A Review of Wearable Tracking and Emotional Monitoring Solutions for Individuals with Autism and Intellectual Disability; Proceedings of the Fourth International Conference on Smart Portable, Wearable, Implantable and Disability-oriented Devices and Systems; Barcelona, Spain. 22–26 July 2018.
    1. Fitbit. [(accessed on 5 October 2018)]; Available online: .
    1. Hexoskin, Inc. [(accessed on 6 October 2018)]; Available online: .
    1. Benedetto S., Caldato C., Bazzan E., Greenwood D.C., Pensabene V., Actis P. Actis Assessment of the Fitbit Charge 2 for monitoring heart rate. PLoS ONE. 2018;13:e192691. doi: 10.1371/journal.pone.0192691.
    1. Garmin. [(accessed on 10 October 2018)]; Available online: .
    1. Scosche. [(accessed on 10 October 2018)]; Available online: .
    1. McCarthy C., Pradhan N., Redpath C., Adler A. Validation of the Empatica E4 wristband; Proceedings of the IEEE EMBS International Student Conference (ISC); Ottawa, ON, Canada. 29–31 May 2016;
    1. Empatica, Inc. [(accessed on 30 October 2018)]; Available online: .
    1. Empatica Inc. [(accessed on 23 October 2018)]; Available online:
    1. Empatica Srl. [(accessed on 23 October 2018)]; Available online: .
    1. PulseOn. [(accessed on 5 October 2018)]; Available online: .
    1. Pieti J., Mehrang S., Tolonen J., Helander E., Jimison H., Pavel M., Korhonen I. EMBEC & NBC 2017. Volume 65. Springer; Singapore: 2017. Evaluation of the accuracy and reliability for photoplethysmography based heart rate and beat-to-beat detection during daily activities; pp. 145–148.
    1. The ViSi Mobile. [(accessed on 10 October 2018)]; Available online:
    1. Weenk M., van Goor H., Frietman B., Engelen L.J., van Laarhoven C.J., Smit J., Bredie S.J.H., van de belt T.H. Continuous monitoring of vital signs using wearable devices on the general ward: Pilot study. JMIR Mhealth Uhealth. 2017;5:e91. doi: 10.2196/mhealth.7208.
    1. Zypher Technology. [(accessed on 9 October 2018)]; Available online: .
    1. Nepi D., Sbrollini A., Agostinelli A. Validation of the heart-rate signal provided by the Zephyr bioharness 3.0; Proceedings of the Computing in Cardiology Conference (CinC); Vancouver, BC, Canada. 11–14 September 2016; pp. 361–364.
    1. Equivital, Inc. [(accessed on 10 October 2018)]; Available online: .
    1. Akintola A.A., van de Pol V., Bimmel D., Maan A.C., van Heemst D. comparative analysis of the equivital eq02 lifemonitor with holter ambulatory ecg device for continuous measurement of ecg, heart rate, and heart rate variability: A validation study for precision and accuracy. Front. Physiol. 2016;7:391. doi: 10.3389/fphys.2016.00391.
    1. Zephyr Performance Systems. [(accessed on 6 September 2018)]; Available online: .
    1. Cherif N.H., Mezghani N., Gaudreault N., Ouakrim Y., Mouzoune I., Boulay P. Physiological data validation of the hexoskin smart textile; Proceedings of the 11th International Joint Conference on Biomedical Engineering System and Technologies (BIOSTEC 2018); Funchal, Portugal. 19–21 January 2018;
    1. Polar Electro. [(accessed on 10 October 2018)]; Available online: .
    1. Vogelaere P., De Meyer F., Duquet W., Vandevelde P. Sports tester PE 3000 vs Holter ECG for the measurement of heart frequency. Sci. Sports. 1986;1:321–329. doi: 10.1016/S0765-1597(87)80024-2.
    1. Plews D.J., Scott B., Altini M., Wood M., Kilding A.E., Laursen P.B. Comparison of heart rate variability recording with smart phone photoplethysmographic, Polar H7 chest strap and electrocardiogram methods. Int. J. Sports Physiol. Perform. 2017;12:1324–1328. doi: 10.1123/ijspp.2016-0668.
    1. Polar Electro Oy. [(accessed on 10 October 2018)]; Available online: .
    1. Giles D., Draper N., Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur. J. Appl. Physiol. 2016;116:563–571. doi: 10.1007/s00421-015-3303-9.
    1. Polar Electro Oy. [(accessed on 12 October 2018)]; Available online: .
    1. Qardio, Inc. [(accessed on 10 October 2018)]; Available online:
    1. Is QardioCore Clinically Validated? [(accessed on 10 October 2018)]; Available online:
    1. Under Armour, Inc. [(accessed on 10 October 2018)]; Available online: .
    1. Heart Rate Variability Logger. [(accessed on 10 October 2018)]; Available online: .
    1. Wahoo Fitness. [(accessed on 10 October 2018)]; Available online: .
    1. Elite HRV. [(accessed on 10 October 2018)]; Available online: .
    1. Suunto. [(accessed on 9 October 2018)]; Available online:
    1. Suunto, Inc. [(accessed on 9 October 2018)]; Available online:
    1. Bouillod A., Cassirame J., Bousson J.M., Sagawa Y., Jr., Tordi N. Accuracy of the Suunto system for heart rate variability analysis during a tilt-test. Rev. Bras. Cineantropometria Desempenho Hum. 2015;17:409–417. doi: 10.5007/1980-0037.2015v17n4p409.
    1. Apple. [(accessed on 5 October 2018)]; Available online:
    1. Hernando D., Roca S., Sancho J., Alesanco Á., Bailón R. Validation of the apple watch for heart rate variability measurements during relax and mental stress in healthy subjects. Sensors. 2018;18:2619. doi: 10.3390/s18082619.
    1. Healbe, Inc. [(accessed on 15 October 2018)]; Available online:
    1. MC10 Inc. [(accessed on 8 September 2018)]; Available online: .
    1. MC10 Inc. [(accessed on 10 October 2018)]; Available online: .
    1. VialConnect. [(accessed on 10 September 2018)]; Available online:
    1. Lief Therapeutics, Inc. [(accessed on 15 October 2018)]; Available online: .
    1. Komodo Technologies. [(accessed on 10 September 2018)]; Available online:
    1. Brain Power, LLC. [(accessed on 23 October 2018)]; Available online:
    1. Using Technology to Recognise Emotions in Autistic People, Graduation Report, University of Twente. [(accessed on 10 October 2018)]; Available online: .
    1. Imani S., Bandodkar A.J., Mohan A.M.V., Kumar R., Yu S., Wang J., Mercier P.P. A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 2016;7:11650. doi: 10.1038/ncomms11650.
    1. Yoon S., Sim J.K., Cho Y. A flexible and wearable human stress monitoring patch. Sci. Rep. 2016;6:23468. doi: 10.1038/srep23468.
    1. Williams M.A., Roseway A., O’Dowd C., Czerwinski M., Moriss M.M. Swarm: An actuated wearable for mediating affect; Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction; Stanford, CA, USA. 16–19 January 2015.
    1. Guo C., Chen Y.V., Qian Z.C., Ma Y., Dinh H., Anasingaraju S. Designing a Smart Scarf to Influence Group Members’ Emotions in Ambience: Design Process and User Experience; Proceedings of the International Conference on Universal Access in Human-Computer Interaction; Toronto, ON, Canada. 17–22 July 2016; pp. 392–402.
    1. Hui T.K.L., Sherratt R.S. Coverage of Emotion Recognition for Common Wearable Biosensors. Biosensors. 2018;8:30. doi: 10.3390/bios8020030.
    1. Tang T.Y., Zhejiang W. Helping Neuro-typical Individuals to “Read” the Emotion of Children with Autism Spectrum Disorder: An Internetof-Things Approach; Proceedings of the 15th International Conference on Interaction Design and Children; Manchester, UK. 21–24 June 2016.
    1. Torrado J.C., Gomez J., Montoro G. Emotional Self-Regulation of Individuals with Autism Spectrum Disorders: Smartwatches for Monitoring and Interaction. Sensor. 2017;17:1359. doi: 10.3390/s17061359.
    1. AlHanai T.W., Ghassemi M.M. Predicting Latent Narrative Mood using Audio and Physiologic Data; Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Conference; San Francisco, CA, USA. 4–9 February 2017.
    1. Northrup C.M., Lantz J., Hamlin T. Wearable stress sensors for children with autism spectrum disorder with in situ alerts to caregivers via a mobile phone. Iproceedings. 2016;2 doi: 10.2196/iproc.6119.
    1. Simm W., Ferrario M.A., Gradinar A., Smith M.T., Forshaw S., Smith I., Whittl J. Anxiety and Autism: Towards Personalized Digital Health; Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems; San Jose, CA, USA. 7–12 May 2016.
    1. Sentio Solutions Inc. [(accessed on 10 October 2018)]; Available online: .
    1. Awake Labs, Inc. [(accessed on 6 September 2018)]; Available online:
    1. Kushki A., Anagnostou E. Anxiety Meter. 20160000365A1. U.S. Patent. 2016 Jan 7;
    1. Gaia LLC. [(accessed on 23 September 2018)]; Available online:
    1. Hedman E.B. Master’s Thesis. University of Colorado; Denver, CO, USA: 2010. [(accessed on 23 October 2018)]. In-Situ Measurement of Electrodermal activity during Occupational Therapy. Available online: .
    1. TouchPoint, Inc. [(accessed on 6 June 2018)]; Available online: .
    1. Serin A., Hageman N.S., Kade E. The Therapeutic Effect of Bilateral Alternating Stimulation Tactile Form Technology on the Stress Response. J. Biotechnol. Biomed. Sci. 2018;1:42–47. doi: 10.14302/issn.2576-6694.jbbs-18-1887.
    1. Bio Technologies. [(accessed on 23 October 2018)]; Available online: .
    1. Muaremi A., Arnrich B., Tröster G. Towards Measuring Stress with Smartphones and Wearable Devices During Workday and Sleep. Bionanoscience. 2013;3:172–183. doi: 10.1007/s12668-013-0089-2.
    1. Gjoreski M., Luštrek M., Gams M., Gjoreski H. Monitoring stress with a wrist device using context. J. Biomed. Inform. 2017;73:159–170. doi: 10.1016/j.jbi.2017.08.006.
    1. Padmaja B., Prasad V.R., Sunitha K.V. A Machine Learning Approach for Stress Detection using a Wireless Physical Activity Tracker. Int. J. Mach. Learn. Comput. 2018;8:33–38. doi: 10.18178/ijmlc.2018.8.1.659.
    1. Thync Global Inc. [(accessed on 16 October 2018)]; Available online:
    1. Yoshimoto S., Babygirija R., Dobner A., Ludwig K., Takahashi T. Anti-stress effects of transcutaneous electrical nerve stimulation (TENS) on colonic motility in rats. Dig. Dis. Sci. 2012;57:1213–1221. doi: 10.1007/s10620-012-2040-8.
    1. Fregni F., Macedo I.C., Spezia-Adachi L.N., Scarabelot V.L., Laste G., Souza A., Sanches P.R.S., Caumo W., Torres I.L.S. Transcranial direct current stimulation (tDCS) prevents chronic stress-induced hyperalgesia in rats. Brain Stimul. 2018;11:299–301. doi: 10.1016/j.brs.2017.11.009.
    1. ChooseMuse, Inc. [(accessed on 16 October 2018)]; Available online:
    1. Healthcare Inc. [(accessed on 7 October 2018)]; Available online:
    1. Sentio Solutions Inc. [(accessed on 15 October 2018)]; Available online: .
    1. Awake Labs. [(accessed on 17 October 2018)]; Available online:
    1. Dymaxia Inc. [(accessed on 23 October 2018)]; Available online:
    1. mPath. [(accessed on 23 October 2018)]; Available online:
    1. iBreve, Ltd. [(accessed on 15 October 2018)]; Available online:
    1. Europa. [(accessed on 17 October 2018)]; Available online: .
    1. KiddoWear, Inc. [(accessed on 15 October 2018)]; Available online:
    1. Spire, Inc. [(accessed on 15 October 2018)]; Available online: .
    1. Federal Drug Adminstraton. [(accessed on 16 October 2018)]; Available online: .
    1. SKIIN, Inc. [(accessed on 15 October 2018)]; Available online:
    1. Bedell Innovations. [(accessed on 15 October 2018)]; Available online: .
    1. Moodmetric. [(accessed on 15 October 2018)]; Available online:
    1. Galvanic, Inc. [(accessed on 16 October 2018)]; Available online:
    1. Bhayee S., Tomaszewski P., Lee D.H., Moffat G., Pino L., Moreno S., Farb N.A.S. Attentional and affective consequences of technology supported mindfulness training: A randomised, active control, efficacy trial. BMC Psychol. 2016;4:60. doi: 10.1186/s40359-016-0168-6.
    1. Urban. [(accessed on 15 October 2018)]; Available online: .

Source: PubMed

3
購読する